Advertisement

Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration

  • Nicole E. ZanderEmail author
  • Joshua A. Orlicki
  • Adam M. Rawlett
  • Thomas P. BeebeJr.
Article

Abstract

The impact of mat porosity of polycaprolactone (PCL) electrospun fibers on the infiltration of neuron-like PC12 cells was evaluated using two different approaches. In the first method, bi-component aligned fiber mats were fabricated via the co-electrospinning of PCL with polyethylene oxide (PEO). Variation of the PEO flow rate, followed by selective removal of PEO from the PCL/PEO mesh, allowed for control of the porosity of the resulting scaffold. In the second method, aligned fiber mats were fabricated from various concentrations of PCL solutions to generate fibers with diameters between 0.13 ± 0.06 and 9.10 ± 4.1 μm. Of the approaches examined, the variation of PCL fiber diameter was found to be the better method for increasing the infiltration of PC12 cells, with the optimal infiltration into the ca. 1.5-mm-thick meshes observed for the mats with the largest fiber diameters, and hence largest pore sizes.

Keywords

PC12 Cell Fiber Diameter Electrospun Fiber Cellular Infiltration Infiltration Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li WS, Guo Y, Wang H, Shi DJ, Liang CF, Ye ZP, Qing F, Gong J. Electrospun nanofibers immobilized with collagen for neural stem cells culture. J Mater Sci Mater Med. 2008;19(2):847–54.CrossRefGoogle Scholar
  2. 2.
    Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.CrossRefGoogle Scholar
  3. 3.
    Boudriot U, Dersch R, Greiner A, Wendorff JH. Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs. 2006;30(10):785–92.CrossRefGoogle Scholar
  4. 4.
    Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216–23.CrossRefGoogle Scholar
  5. 5.
    Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed. 2007;46(30):5670–703.CrossRefGoogle Scholar
  6. 6.
    Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des. 2006;12(36):4751–70.CrossRefGoogle Scholar
  7. 7.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.CrossRefGoogle Scholar
  8. 8.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.CrossRefGoogle Scholar
  9. 9.
    Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.CrossRefGoogle Scholar
  10. 10.
    Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008;9(8):2097–103.CrossRefGoogle Scholar
  11. 11.
    Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008;9(3):1044–9.CrossRefGoogle Scholar
  12. 12.
    Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol Heart C. 1999;277(2):H433–44.Google Scholar
  13. 13.
    Radisic M, Yang LM, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart C. 2004;286(2):H507–16.CrossRefGoogle Scholar
  14. 14.
    Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–805.CrossRefGoogle Scholar
  15. 15.
    Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29(15):2348–58.CrossRefGoogle Scholar
  16. 16.
    Baiguera S, Del Gaudio C, Fioravanzo L, Bianco A, Grigioni M, Folin M. In vitro astrocyte and cerebral endothelial cell response to electrospun poly(epsilon-caprolactone) mats of different architecture. J Mater Sci Mater Med. 2010;21(4):1353–62.CrossRefGoogle Scholar
  17. 17.
    Gentsch R, Boysen B, Lankenau A, Borner HG. Single-step electrospinning of bimodal fiber meshes for ease of cellular infiltration. Macromol Rapid Commun. 2010;31(1):59–64.CrossRefGoogle Scholar
  18. 18.
    Jin HJ, Chen JS, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25(6):1039–47.CrossRefGoogle Scholar
  19. 19.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7–8):1289–97.CrossRefGoogle Scholar
  20. 20.
    Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.CrossRefGoogle Scholar
  21. 21.
    Venugopal JR, Zhang YZ, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs. 2006;30(6):440–6.CrossRefGoogle Scholar
  22. 22.
    Balguid A, Mol A, van Marion MH, Bank RA, Bouten CVC, Baaijens FPT. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng A. 2009;15(2):437–44.CrossRefGoogle Scholar
  23. 23.
    Van Lieshout MI, Vaz CM, Rutten MCM, Peters GWM, Baaijens FPT. Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J Biomater Sci. 2006;17(1–2):77–89.CrossRefGoogle Scholar
  24. 24.
    van Tienen TG, Heijkants R, Buma P, de Groot JH, Pennings AJ, Veth RPH. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes. Biomaterials. 2002;23(8):1731–8.CrossRefGoogle Scholar
  25. 25.
    Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13(9):2249–57.CrossRefGoogle Scholar
  26. 26.
    Leong MF, Rasheed MZ, Lim TC, Chian KS. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d,l-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A. 2009;91A(1):231–40.CrossRefGoogle Scholar
  27. 27.
    Huang YY, Wang DY, Chang LL, Yang YC. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning. J Biomater Sci. 2010;21(11):1503–14.CrossRefGoogle Scholar
  28. 28.
    Kim SJ, Jang DH, Park WH, Min BM. Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer. 2010;51(6):1320–7.CrossRefGoogle Scholar
  29. 29.
    Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 2005;26(18):3929–39.CrossRefGoogle Scholar
  30. 30.
    Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials. 2010;31(3):491–504.CrossRefGoogle Scholar
  31. 31.
    Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31(15):4313–21.CrossRefGoogle Scholar
  32. 32.
    Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, Gilbert RJ. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration applications. J Neural Eng. 2009;6(1):016001.CrossRefGoogle Scholar
  33. 33.
    Zander NE, Orlicki JA, Rawlett AM, Beebe TP. Surface-modified biomaterial bridge for the enhancement and control of neurite outgrowth. Biointerphases. 2010;5(4):149–58.CrossRefGoogle Scholar
  34. 34.
    Wulkersdorfer B, Kao KK, Agopian VG, Ahn A, Dunn JC, Wu BM, Steizner M. Bimodal porous scaffolds by sequential electrospinning of poly(glycolic acid) with sucrose particles. Int J Polym Sci. 2010;1:43678–86.Google Scholar
  35. 35.
    Skotak M, Ragusa J, Gonzalez D, Subramanian A. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Biomed Mater. 2011;6(5):055012–21.CrossRefGoogle Scholar
  36. 36.
    Balguid A, Mol A, van Marion MH, Bank RA, Bouten CVC, Baajiens FPT. Tailoring fiber diameter in electrospun poly(e-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng A. 2009;15(2):437–46.CrossRefGoogle Scholar
  37. 37.
    Lee JB, Jeong SI, Bae MS, Yang DH, Heo DN, Kim CH, Alsberg E, Kwon IK. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. 2011;17(21–22):2695–702.Google Scholar
  38. 38.
    Wen XJ, Tresco PA. Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. J Biomed Mater Res A. 2006;76A(3):626–37.CrossRefGoogle Scholar
  39. 39.
    Bosworth LA, Gibb A, Downes S. Gamma irradiation of electrospun poly(ε-caprolactone) fibers affects material properties but not cell response. J Polym Sci B. 2012;50(12):870–6.CrossRefGoogle Scholar
  40. 40.
    Bye FJ, Wang L, Bullock AJ, Blackwood KA, Ryan AJ, MacNeil S. Postproduction processing of electrospun fibres for tissue engineering. J Vis Exp. 2012;66. doi: 10.3791/4172.
  41. 41.
    Geutjes PJ, Faraj KA, Daamen WF, van Kuppevelt TH. Preparation of differently sized injectable collagen micro-scaffolds. J Tissue Eng Regen Med. 2011;8(5):460–70.Google Scholar
  42. 42.
    Grant RA, Cox RW, Kent CM. Effects of gamma-irradiation on structure and reactivity of native and crosslinked collagen fibers. J Anat. 1973;115(1):29–43.Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2012

Authors and Affiliations

  • Nicole E. Zander
    • 1
    • 2
    Email author
  • Joshua A. Orlicki
    • 1
  • Adam M. Rawlett
    • 1
  • Thomas P. BeebeJr.
    • 2
  1. 1.US Army Research LaboratoryWeapons and Materials Research DirectorateAberdeen Proving GroundUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of DelawareNewarkUSA

Personalised recommendations