Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 12, pp 2867–2879 | Cite as

Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties

  • Valentina Aina
  • Gigliola Lusvardi
  • Basil Annaz
  • Iain R. Gibson
  • Flora E. Imrie
  • Gianluca Malavasi
  • Ledi Menabue
  • Giuseppina Cerrato
  • Gianmario Martra


The present study is aimed at investigating the contribution of two biologically important cations, Mg2+ and Sr2+, when substituted into the structure of hydroxyapatite (Ca10(PO4)6(OH)2,HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg2+- and Sr2+-containing precursors to partially replace Ca2+ ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg2+) or combined (Mg2+ and Sr2+) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N2 adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and β-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/β-TCP ratio.


Attenuate Total Reflectance Biphasic Calcium Phosphate Crystallinity Degree Attenuate Total Reflectance Spectrum Magnesium Chloride Hexahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Italian Ministry MUR (Project COFIN-2006, Prot. 2006032335_004: “Interface phenomena in silica-based nanostructured biocompatible materials contacted with biological systems”), by Regione Piemonte Italy (Project CIPE-2004: “Nanotechnologies and Nanosciences. Nanostructured materials biocompatible for biomedical applications”) and by San Paolo company Project Id: ORTO11RRT5, whose contribution is gratefully acknowledged. V.A. kindly acknowledges Regione Piemonte, Italy, for a postdoctoral fellowship. FEI acknowledges ERASMUS programme for financial support during her research study at the University of Torino.


  1. 1.
    Qi G, Zhang S, Khor KA, Lye SW, Zeng X, Weng W, Liu C, Venkatraman SS, Ma LL. Osteoblastic cell response on magnesium-incorporated apatite coatings. Appl Surf Sci. 2008;255:304–7.CrossRefGoogle Scholar
  2. 2.
    LeGeros RZ. Hydroxyapatite and related materials. Boca Raton: CRC Press; 1994.Google Scholar
  3. 3.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel: Karger; 1991.Google Scholar
  4. 4.
    Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng Reports. 2010;70:225–42.CrossRefGoogle Scholar
  5. 5.
    Padilla S, Izquierdo-Barba I, Vallet-Regi M. High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater. 2008;20:5942–4.CrossRefGoogle Scholar
  6. 6.
    Sanchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regi M. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. Acta Biomater. 2009;5:2738–51.CrossRefGoogle Scholar
  7. 7.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81.CrossRefGoogle Scholar
  8. 8.
    Carrodeguas RG, De Aza S. alpha-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7:3536–46.CrossRefGoogle Scholar
  9. 9.
    de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, de Sena LA, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98A:351–8.CrossRefGoogle Scholar
  10. 10.
    Ergun C, Webster TJ, Bizios R, Doremus RH. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res. 2002;59:305–11.CrossRefGoogle Scholar
  11. 11.
    Lim PN, Tay BY, Chan CM, Thian ES. Synthesis and characterization of silver/silicon-cosubstituted nanohydroxyapatite. J Biomed Mater Res Part B Appl Biomater. 2012;100B:285–91.CrossRefGoogle Scholar
  12. 12.
    Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.CrossRefGoogle Scholar
  13. 13.
    Manzano M, Lozano D, Arcos D, Portal-Nunez S, Lopez la Orden C, Esbrit P, Vallet-Regi M. Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Acta Biomater. 2011;7:3555–62.CrossRefGoogle Scholar
  14. 14.
    Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G. Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir. 2009;25:5647–54.CrossRefGoogle Scholar
  15. 15.
    Salviulo G, Bettinelli M, Russo U, Speghini A, Nodari L. Synthesis and structural characterization of Fe(3+)-doped calcium hydroxyapatites: role of precursors and synthesis method. J Mater Sci. 2011;46:910–22.CrossRefGoogle Scholar
  16. 16.
    Drouet C, Carayon M-T, Combes C, Rey C. Surface enrichment of biomimetic apatites with biologically-active ions Mg(2+) and Sr(2+): a preamble to the activation of bone repair materials. Mat Sci Eng C Biomimetic Supramol Syst. 2008;28:1544–50.CrossRefGoogle Scholar
  17. 17.
    Gibson IR, Bonfield W. Preparation and characterisation of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci Mater in Med. 2002;13:685–93.CrossRefGoogle Scholar
  18. 18.
    Stephen JA, Skakle JMS, Gibson IR. Synthesis of novel high silicate-substituted hydroxyapatite by Co-substitution mechanisms. Key Eng Mater. 2007;87:330–2.Google Scholar
  19. 19.
    Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Acta Biomater. 2010;6:571–6.CrossRefGoogle Scholar
  20. 20.
    Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME. Magnesium incorporation into hydroxyapatite. Biomaterials. 2011;32:1826–37.CrossRefGoogle Scholar
  21. 21.
    Nielsen SP. The biological role of strontium. Bone. 2004;35:583–8.CrossRefGoogle Scholar
  22. 22.
    Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.CrossRefGoogle Scholar
  23. 23.
    Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29:176–9.CrossRefGoogle Scholar
  24. 24.
    Kolmas J, Jaklewicz A, Zima A, Bucko M, Paszkiewicz Z, Lis J, Slosarczyk A, Kolodziejski W. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties. J Mol Struct. 2011;987:40–50.CrossRefGoogle Scholar
  25. 25.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004;25:4647–57.CrossRefGoogle Scholar
  26. 26.
    Bertinetti L, Tampieri A, Landi E, Martra G, Coluccia S. Punctual investigation of surface sites of HA and magnesium-HA. J Eur Ceram Soc. 2006;26:987–91.CrossRefGoogle Scholar
  27. 27.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci Mater Med. 2008;19:239–47.CrossRefGoogle Scholar
  28. 28.
    PCPFWIN 2.3. JCPDS International center for diffraction data, Swarthmore 2002.Google Scholar
  29. 29.
    Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–82.CrossRefGoogle Scholar
  30. 30.
    Larson A, Von Dreele R. General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 1994;86-748.Google Scholar
  31. 31.
    Toby B. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001;34:210–9.CrossRefGoogle Scholar
  32. 32.
    Sudarsanan K, Young RA. Acta Crystallogr. Sec B. 1969;25:1534–9.CrossRefGoogle Scholar
  33. 33.
    Dickens B, Schroeder L, Brown W. Crystallographic studies of the role of Mg as a stabilizing impurity in Ca3(PO4)2. The crystal structure of pure Ca3(PO4)2. J Solid State Chem. 1974;10:232–48.CrossRefGoogle Scholar
  34. 34.
    Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRefGoogle Scholar
  35. 35.
    Ren F. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.CrossRefGoogle Scholar
  36. 36.
    Yasukawa A, Ouchi S, Kandori K, Ishikawa T. Preparation and characterization of magnesium-calcium hydroxyapatites. J Mater Chem. 1996;6:1401–5.CrossRefGoogle Scholar
  37. 37.
    Aminzadeh A. Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta Part a-Mol Biomol Spectrosc. 1997;53:693–7.CrossRefGoogle Scholar
  38. 38.
    Silva CC, Sombra ASB. Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. J. Phys Chem Solids. 2004;65:1031–3.CrossRefGoogle Scholar
  39. 39.
    O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG. Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 2008;4:1455–64.CrossRefGoogle Scholar
  40. 40.
    Paderni S, Terzi S, Amendola L. Major bone defect treatment with an osteoconductive bone substitute. La Chirurgia degli organi di movimento. 2009;93:89–96.Google Scholar
  41. 41.
    Lu X, Li S, Zhang J, Zhang Z, Lu B, Bu H, Li Y, Cheng J. Biocompatibility of HA/TCP biphasic ceramics with co-cultured human osteoblasts in vitro. J Biomed Eng. 2001;18:497–9.Google Scholar
  42. 42.
    Macchetta A, Turner IG, Bowen CR. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009;5:1319–27.CrossRefGoogle Scholar
  43. 43.
    Arinzeh TL, Tran T, McAlary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 2005;26:3631–8.CrossRefGoogle Scholar
  44. 44.
    Yuan H, Fernandes H, Habibovic P. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA. 2010;107:13614–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Valentina Aina
    • 1
    • 2
  • Gigliola Lusvardi
    • 3
  • Basil Annaz
    • 4
  • Iain R. Gibson
    • 4
  • Flora E. Imrie
    • 4
  • Gianluca Malavasi
    • 3
  • Ledi Menabue
    • 3
  • Giuseppina Cerrato
    • 1
    • 2
  • Gianmario Martra
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of TurinTurinItaly
  2. 2.Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), INSTM (Italian National Consortium for Materials Science and Technology)UdR University of TorinoTurinItaly
  3. 3.Department of ChemistryUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.School of Medical SciencesInstitute of Medical Sciences, University of Aberdeen, ForesterhillAberdeenUK

Personalised recommendations