Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 12, pp 2881–2891 | Cite as

Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications

  • A. W. Wren
  • A. Coughlan
  • K. E. Smale
  • S. T. Misture
  • B. P. Mahon
  • O. M. Clarkin
  • M. R. Towler


A series of titanium (Ti) based glasses were formulated (0.62 SiO2–0.14 Na2O–0.24 CaO, with 0.05 mol% TiO2 substitutions for SiO2) to develop glass/ceramic scaffolds for bone augmentation. Glasses were initially characterised using X-ray diffraction (XRD) and particle size analysis, where the starting materials were amorphous with 4.5 μm particles. Hot stage microscopy and high temperature XRD were used to determine the sintering temperature (~700 °C) and any crystalline phases present in this region (Na2Ca3Si6O16, combeite and quartz). Hardness testing revealed that the Ti-free control (ScC—2.4 GPa) had a significantly lower hardness than the Ti-containing materials (Sc1 and Sc2 ~6.6 GPa). Optical microscopy determined pore sizes ranging from 544 to 955 μm. X-ray microtomography calculated porosity from 87 to 93 % and surface area measurements ranging from 2.5 to 3.3 SA/mm3. Cytotoxicity testing (using mesenchymal stem cells) revealed that all materials encouraged cell proliferation, particularly the higher Ti-containing scaffolds over 24–72 h.


TiO2 Mesenchymal Stem Cell Sinter Temperature Simulated Body Fluid Bioactive Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shih CJ, Chen HT, Huang LF, Lu PS, Chang HF, Chang IL. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds. Mater Sci Eng: C. 2010;30:657–63.CrossRefGoogle Scholar
  2. 2.
    Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Micropor Mesopor Mater. 2008;112:494–503.CrossRefGoogle Scholar
  3. 3.
    Zhu Y, Kaskel S. Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Micropor Mesopor Mater. 2009;118:176–82.CrossRefGoogle Scholar
  4. 4.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.CrossRefGoogle Scholar
  5. 5.
    Jones JR. New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc. 2009;29:1275–81.CrossRefGoogle Scholar
  6. 6.
    Chen Q-Z, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3:551–62.CrossRefGoogle Scholar
  7. 7.
    Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Appl Surf Sci. 2008;255:505–8.CrossRefGoogle Scholar
  8. 8.
    Charles-Harris M, del Valle S, Hentges E, Bleuet P, Lacroix D, Planell JA. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials. 2007;28:4429–38.CrossRefGoogle Scholar
  9. 9.
    Wren AW, Laffir FR, Kidari A, Towler MR. The structural role of titanium in Ca–Sr–Zn–Si/Ti glasses for medical applications. J Non-Crys Solids. 2010;357(3):1021–6.CrossRefGoogle Scholar
  10. 10.
    Lausmaa J. Surface spectroscopic characterization of titanium implant materials. J Electron Spectr Related Phenom. 1996;81:343–61.CrossRefGoogle Scholar
  11. 11.
    Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.CrossRefGoogle Scholar
  12. 12.
    Yammamoto O, Alvarez K, Kikuchi T, Fukuda M. Fabrication and characterization of oxygen-diffused titanium for biomedical applications. Acta Biomater. 2009;5(9):3605–15.CrossRefGoogle Scholar
  13. 13.
    Barrere F, Snel MME, van Blitterswijk CA, de Groot K, Layrolle P. Nano-scale of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25:2901–10.CrossRefGoogle Scholar
  14. 14.
    Takadama H, Kim H-M, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.CrossRefGoogle Scholar
  15. 15.
    Piscanec S, Ciacchi LC, Vesselli E, Comelli G, Sbaizero O, Meriani S, De Vita A. Bioactivity of TiN-coated titanium implants. Acta Mater. 2004;52:1237–45.CrossRefGoogle Scholar
  16. 16.
    Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.CrossRefGoogle Scholar
  17. 17.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  18. 18.
    Misture ST. Large-volume atmosphere-controlled diffraction furnace. Meas Sci Technol. 2003;14:1091–8.CrossRefGoogle Scholar
  19. 19.
    Vintersten K, Monetti C, Gertsenstein M, Zhang P, Laszlo L, Biechele S, Nagy A. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis. 2004;40:241–6.CrossRefGoogle Scholar
  20. 20.
    English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110:91–100.CrossRefGoogle Scholar
  21. 21.
    Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy. 2011;66(4):523–31.CrossRefGoogle Scholar
  22. 22.
    Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A. Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 2009;5:374–80.CrossRefGoogle Scholar
  23. 23.
    Baino F, Verné E, Vitale-Brovarone C. 3-D high-strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater Sci Eng: C. 2009;29:2055–62.CrossRefGoogle Scholar
  24. 24.
    Bellucci D, Cannillo V, Sola A. A new potassium-based bioactive glass: sintering behaviour and possible applications for bioceramic scaffolds. Ceram Int. 2011;37(1):145–57.CrossRefGoogle Scholar
  25. 25.
    Huang R, Pan J, Boccaccini AR, Chen QZ. A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. Acta Biomater. 2008;4:1095–103.CrossRefGoogle Scholar
  26. 26.
    Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.CrossRefGoogle Scholar
  27. 27.
    Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng: C. 2009;29:2275–81.CrossRefGoogle Scholar
  28. 28.
    Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5—polycaprolactone composite scaffolds via salt-leaching. Comp Struct. 2010;92:1823–32.CrossRefGoogle Scholar
  29. 29.
    Esfahani SIR, Tavangarian F, Emadi R. Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement. Mater Lett. 2008;62:3428–30.CrossRefGoogle Scholar
  30. 30.
    Ochoa I, Sanz-Herrera JA, García-Aznar JM, Doblaré M, Yunos DM, Boccaccini AR. Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J Biomech. 2009;42:257–60.CrossRefGoogle Scholar
  31. 31.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. W. Wren
    • 1
  • A. Coughlan
    • 1
  • K. E. Smale
    • 1
  • S. T. Misture
    • 1
  • B. P. Mahon
    • 2
  • O. M. Clarkin
    • 3
  • M. R. Towler
    • 1
    • 4
  1. 1.Inamori School of EngineeringAlfred UniversityAlfredUSA
  2. 2.Institute of ImmunologyNational University of IrelandMaynoothIreland
  3. 3.South Eastern Applied Materials Research CentreWaterford Institute of TechnologyWaterfordIreland
  4. 4.Materials & Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations