Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 11, pp 2631–2637 | Cite as

Low temperature fabrication of spherical brushite granules by cement paste emulsion

  • Claus Moseke
  • Christoph Bayer
  • Elke Vorndran
  • Jake E. Barralet
  • Jürgen Groll
  • Uwe Gbureck
Article

Abstract

Secondary protonated calcium phosphates such as brushite (CaHPO4·2H2O) or monetite (CaHPO4) have a higher resorption potential in bone defects than sintered ceramics, e.g. tricalcium phosphate or hydroxyapatite. However, processing of these phosphates to monolithic blocks or granules is not possible by sintering due to thermal decomposition of protonated phosphates at higher temperatures. In this study a low temperature technique for the preparation of spherical brushite granules in a cement setting reaction is presented. These granules were synthesized by dispersing a calcium phosphate cement paste composed of β-tricalcium phosphate and monocalcium phosphate together with a surfactant to an oil/water emulsion. The reaction products were characterized regarding their size distribution, morphology, and phase composition. Clinically relevant granule sizes ranging from 200 μm to 1 mm were obtained, whereas generally smaller granules were received with higher oil viscosity, increasing temperature or higher powder to liquid ratios of the cement paste. The hardened granules were microporous with a specific surface area of 0.7 m2/g and consisted of plate-like brushite (>95 % according to XRD) crystals of 0.5–7 μm size. Furthermore it was shown that the granules may be also used for drug delivery applications. This was demonstrated by adsorption of vancomycin from an aqueous solution, where a load of 1.45–1.88 mg drug per g granules and an almost complete release within 2 h was obtained.

References

  1. 1.
    Niedhart C, Pingsmann A, Jurgens C, Marr A, Blatt R, Niethard FU. Komplikationen nach Entnahme autologen Knochens aus dem ventralen und dorsalen Beckenkamm-eine prospektive, kontrollierte studie. Z Orthop Grenzgeb. 2003;141:481–6.CrossRefGoogle Scholar
  2. 2.
    Mazock JB, Schow SR, Triplett RG. Posterior iliac crest bone harvest: review of technique, complications and use of an epidural catheter for post-operative pain control. J Oral Maxillofac Surg. 2003;61:1497–503.CrossRefGoogle Scholar
  3. 3.
    Wenisch S, Stahl JP, Horas U, Heiss C, Kilian O, Trinkaus K, Hild A, Schnettler R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: Fine structural microscopy. J Biomed Mater Res. 2003;67:713–8.CrossRefGoogle Scholar
  4. 4.
    Mangano C, Piattelli A, Perrotti V, Lezzi G. Dense hydroxyapatite inserted into postextraction sockets: A histologic and histomorphometric 20-year case report. J Periodontol. 2008;79:929–33.CrossRefGoogle Scholar
  5. 5.
    Horch HH, Sader R, Kolk A. Synthetische, phasenreine Beta-Tricalciumphosphat-Keramik (Cerasorb) zur Knochenregeneration bei der rekonstruktiven Chirurgie der Kiefer - Eine klinische Langzeitstudie mit Literaturübersicht. Deutsche Zahnärztliche Zeitschrift. 2004;59:680–6.Google Scholar
  6. 6.
    Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26:4383–94.CrossRefGoogle Scholar
  7. 7.
    Tamimi F, Torres J, Lopez-Cabarcos E, Bassett DC, Habibovic P, Luceron E, Barralet JE. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials. 2009;30:208–16.CrossRefGoogle Scholar
  8. 8.
    Grover LM, Knowles JC, Fleming GJP, Barralet JE. In vitro ageing of brushite calcium phosphate cement. Biomaterials. 2003;24:4133–41.CrossRefGoogle Scholar
  9. 9.
    Grover LM, Gbureck U, Wright AJ, Tremayne M, Barralet JE. Biologically mediated resorption of brushite cement in vitro. Biomaterials. 2006;27:2178–85.CrossRefGoogle Scholar
  10. 10.
    Xia Z, Grover LM, Huang Y, Adamopoulos IE, Gbureck U, Triffitt JT, Shelton RM, Barralet JE. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials. 2006;27:4557–65.CrossRefGoogle Scholar
  11. 11.
    Tamimi FM, Torres J, Tresguerres I, Clemente C, Lopez-Cabarcos E, Blanco LJ. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss (R) and a novel beta-TCP/DCPD granulate. J Clin Periodontol. 2006;33:922–8.CrossRefGoogle Scholar
  12. 12.
    Marinno FT, Torres J, Tresguerres I, Jerez LB, Cabarcos EL. Vertical bone augmentation with granulated brushite cement set in glycolic acid. J Biomed Mater Res A. 2007;81A:93–102.CrossRefGoogle Scholar
  13. 13.
    Tamimi F, Torres J, Kathan C, Baca R, Clemente C, Blanco L, Lopez-Cabarcos E. Bone regeneration in rabbit calvaria with novel monetite granules. J Biomed Mater Res A. 2008;87A:980–5.CrossRefGoogle Scholar
  14. 14.
    Mirtchi AA, Lemaitre J, Munting E. Calcium phosphate cements - action of setting regulators on the properties of the beta-tricalcium phosphate monocalcium phosphate cements. Biomaterials. 1989;10:634–8.CrossRefGoogle Scholar
  15. 15.
    Blume O, Krekeler G, Schilli W. Indikation und Beispiele für die Anwendung von alpha-Tricalciumphosphat als resorbierbarer, alloplastischer Knochenersatz. Unfallchirurg. 1998;265:303–11.Google Scholar
  16. 16.
    Zijderveld SA, Zerbo IR, van den Bergh JP, Schulten EA, ten Bruggenkate CM. Maxillary sinus floor augmentation using a β-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implant. 2005;20:432–40.Google Scholar
  17. 17.
    Briem D, Linhart W, Lehmann W, Meenen NM, Rueger JM. Langzeitergebnisse nach Anwendung einer porösen Hydroxylapatitkeramik (Endobon) zur operativen Versorgung von Tibiakopffrakturen. Unfallchirurg. 2002;105:128–33.CrossRefGoogle Scholar
  18. 18.
    Tamimi F, Sheikh Z, Barralet JE. Dicalcium phosphate cements: Brushite and monetite. Acta Biomater. 2012;8:474–87.CrossRefGoogle Scholar
  19. 19.
    Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 2010;6:2863–73.CrossRefGoogle Scholar
  20. 20.
    Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity Part II: Hypodermic injection and strength improvement of brushite cements. Biomaterials. 2004;25(11):2197–203.CrossRefGoogle Scholar
  21. 21.
    Gbureck U, Hölzel T, Klammert U, Würzeler K, Müller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes made by 3D powder printing. Adv Funct Mater. 2007;17:3940–5.CrossRefGoogle Scholar
  22. 22.
    Torres J, Tamimi F, Alkhraisat M, Prados-Frutos JC, Rastikerdar E, Gbureck U, Barralet JE, López-Cabarcos E. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodont. 2011;38:1147–53.CrossRefGoogle Scholar
  23. 23.
    Misiek DJ, Kent JN, Carr RF. Soft tissue responses to hydroxylapatite particles of different shapes. J Oral Maxillofac Surg. 1984;42:150–60.CrossRefGoogle Scholar
  24. 24.
    Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Controlled Release. 2007;122:173–80.CrossRefGoogle Scholar
  25. 25.
    Hofmann M, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. High strength resorbable brushite bone cement with controlled drug releasing capabilities. Acta Biomater. 2009;5:43–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Claus Moseke
    • 1
  • Christoph Bayer
    • 1
  • Elke Vorndran
    • 1
  • Jake E. Barralet
    • 2
  • Jürgen Groll
    • 1
  • Uwe Gbureck
    • 1
  1. 1.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany
  2. 2.Faculty of DentistryMcGill UniversityMontrealCanada

Personalised recommendations