Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 9, pp 2127–2139

Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells

  • Ryszard Rokicki
  • Waseem Haider
  • Tadeusz Hryniewicz
Article

Abstract

The influence of 6 % sodium hypochlorite (NaClO) treatment on adhesion and proliferation of MC3T3 pre-osteoblast cells seeded on electropolished (EP) and magnetoelectropolished (MEP) nitinol surfaces were investigated. The chemistry, topography, roughness, surface energy, wettability of EP and MEP nitinol surfaces before and after NaClO treatment were studied with X-ray photoelectron spectroscopy (XPS), profilometry, and contact angle meter. In vitro interaction of osteoblast cell and NaClO treated EP and MEP nitinol surfaces were assessed after 3 days of incubation by scanning electron microscopy. The XPS analysis shows that NaClO treatment increases oxygen content especially in subsurface oxide layer of EP and MEP nitinol. The changes of both basic components of nitinol, namely nickel and titanium in oxide layer, were negligible. The NaClO treatment did not influence physico-morphological surface properties of EP and MEP nitinol to a big extent. The osteoblast cells show remarkable adherence and proliferation improvement on NaClO treated EP and MEP nitinol surfaces. After 3 days of incubation they show almost total confluence on both NaClO treated surfaces. The present study shows that NaClO treatment of EP and MEP nitinol surfaces alters oxide layer by enriching it in oxygen and by this improves bone cell–nitinol interaction.

References

  1. 1.
    Shabalovskaya SA. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng. 1996;6:267–89.Google Scholar
  2. 2.
    Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopedic implants. J Bone Jt Surg. 2011;83(3):428–36.Google Scholar
  3. 3.
    Horbett TA. Principles underlying the role of adsorbed plasma-proteins in blood interaction with foreign materials. Cardiovasc Pathol. 1993;2(3):137–48.CrossRefGoogle Scholar
  4. 4.
    Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–7.CrossRefGoogle Scholar
  5. 5.
    Petrini L, Migiavacca F. Review article: biomedical applications of shape memory alloys. Hindawi Publishing Corporation, J Metall. 2011. pp. 15. Article ID 501483.Google Scholar
  6. 6.
    Haider W. Enhanced biocompatibility of NiTi (Nitinol) via surface treatment and alloying. Electronic Theses and Dissertations. 2010. Florida International University, Miami, Paper 177.Google Scholar
  7. 7.
    Sigel A, Sigel H, Sigel RKO. Metal ions in life. Science. 2007;2:619–60.Google Scholar
  8. 8.
    Haider W, Munroe N, Tek V, Pulletikurthi C, Puneet K, Gill S, Pandya S. Review on surface modifications of nitinol. J Long Term Eff Med Implants. 2010;19(2):113–22.CrossRefGoogle Scholar
  9. 9.
    Bernard SA, Balla VK, Devies NM, Bose S, Bandyopadhyay A. Bone cell-materials interaction and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 2011;7:1902–12.CrossRefGoogle Scholar
  10. 10.
    Fushimi K, Startmann M, Hassel A. Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim Acta. 2006;52:1290–5.CrossRefGoogle Scholar
  11. 11.
    Rokicki R, Hryniewicz T. Nitinol surface finishing by magnetoelectropolishing. Trans Inst Metal Finish. 2008;86(5):280–5.CrossRefGoogle Scholar
  12. 12.
    Hryniewicz T, Rokicki R, Rokosz K. Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surf Coat Technol. 2009;203(10–11):1508–15.CrossRefGoogle Scholar
  13. 13.
    Hryniewicz T, Rokosz K, Rokicki R. Surface investigation of NiTi rotary endodontic instruments after magnetoelectropolishing. MRS proceedings of the 18th international materials research congress, 9 on biomaterials, Cancun, Mexico, 16–20 August 2009. 2009;244E:21–32. ISBN 978-1-60511-221-3. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=24949&DID=280254.
  14. 14.
    Hryniewicz T, Rokosz K, Rokicki R. Magnetoelectropolished titanium biomaterial, in biomaterials science and engineering. Chapter 11. In: Rosario Pignatello, editor. ISBN 978-953-307-609-6, InTech, 2011; 227–248. http://www.intechweb.org/, http://www.intechopen.com/articles/show/title/magnetoelectropolished-titanium-biomaterial.
  15. 15.
    Quinones R, Gawalt ES. Study of the formation of self-assembled monolayers on nitinol. Langmuir. 2007;23(20):10123–30.CrossRefGoogle Scholar
  16. 16.
    Lifeng Z, Yan H, Dayun Y, Xiaoying L, Tingfei X, Deyuan Z, Ying H, Jinfeng Y. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys. Biomed Mater. 2011;6:0250012 (12pp).Google Scholar
  17. 17.
    Schmehl JM, Harder C, Wendel HP, Claussen CD, Tepe G. Silicon carbide coating of nitinol stents to increase antitrombogenic properties and reduce nickel release. Cardiovasc Revasc Med. 2008;9(4):255–62.CrossRefGoogle Scholar
  18. 18.
    Bakhshi R, Darbyshire A, Evans JE, You Z, Lu J, Seifalian AM. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf B. 2011;86(1):93–105.CrossRefGoogle Scholar
  19. 19.
    Wu W, Liu X, Han H, Yang D, Lu S. Electropolishing of NiTi for improving biocompatibility. J Mater Sci Technol. 2008;24(6):926–30.Google Scholar
  20. 20.
    Rokicki R. Method for surface inclusions detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol material. US Patent Application number: 2010, 0274077. http://www.faqs.org/patents/app/20100274077.
  21. 21.
    Rokicki R. Detecting nitinol surface inclusions. Mater Device Diagn Ind. 2010;32(2):44–8.Google Scholar
  22. 22.
  23. 23.
    Talysurf CCI 6000—The world’s largest resolution automated optical 3D profiler. Brochure, Taylor Hobson, 2005.Google Scholar
  24. 24.
    Bour H, Nicolas JF, Garrigue JL, Demiden A, Schmitt D. Establishment of nickel specific T cell lines from patients with allergic contact dermatitis: comparison of different protocols. Clin Immunol Immunopatol. 1994;73:142–5.CrossRefGoogle Scholar
  25. 25.
    Firstov G, Votchev R, Kumar H, Blanpain B, van Humbeeck J. Surface oxidation of NiTi shape memory alloys. Biomaterials. 2002;23:4863–71.CrossRefGoogle Scholar
  26. 26.
    Trepanier C, Zhu L, Fino J, Pelton AR. Corrosion resistance of oxidized nitinol. In: Pelton AR, Duerig T, editors. SMST-2003 proceeding of the international conference shape memory and superelastic technologies, 5–8 May 2003. SMST Society Inc. Asilomar Conference Center, Pacific Grove.Google Scholar
  27. 27.
    Hryniewicz T, Rokosz K. On the wear inspection and endurance recovery of nitinol endodontic files. PAK (Measurement Automation and Monitoring). 2009;55(4):247–50.Google Scholar
  28. 28.
    Haider W, Munroe N. Assessment of corrosion resistance and metal ion leaching of nitinol alloys. J Mater Eng Perform. 2011;20(4):812–5.CrossRefGoogle Scholar
  29. 29.
    Shabalovskaya SA, Tian H, Anderegg JW, Dominique U, Schryvers U, Carroll WU, van Humbeeck J. The influence of surface oxides on the distribution and release of nickel from nitinol wires. Biomaterials. 2009;30:468–77.CrossRefGoogle Scholar
  30. 30.
    Rokicki R. The passive oxide film on electropolished titanium. Metal Finish. 1990;88(2):69–70.Google Scholar
  31. 31.
    Webb K, Hlady V, Tresco PA. Relative importance of surface wettabillity and charged functional groups on NIH 3T3 fibroblast attachment, spreading and cytoskeletal organization. J Biomed Mater Res. 1998;41:422–30.CrossRefGoogle Scholar
  32. 32.
    ISO/TS 11139:2006. Sterilization of health care products—vocabulary, 2006.Google Scholar
  33. 33.
    Lambert BJ, Mendelson TA, Craven MD. Review: radiation and ethylene oxide terminal sterilization experiences with drug eluting stent products. AAPS Pharm Sci Tech. 2011;12(4):1116–26.CrossRefGoogle Scholar
  34. 34.
    Shabalovskaya SA, Anderegg J, van Humbeeck J. Review: critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.CrossRefGoogle Scholar
  35. 35.
    Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed Mater Eng. 2002;12(1):69–109.Google Scholar
  36. 36.
    Thierry B, Tabrizian M, Savadogo O, Yahia L. Effect of sterilization processes on NiTi alloy: surface characterization. J Biomed Mater Res. 2000;49:88–98.CrossRefGoogle Scholar
  37. 37.
    Guidline for disinfection and sterilization in healthcare facilities, 2008, Department of Health & Human Services, USA.Google Scholar
  38. 38.
    Praisarnti C, Chang JWW, Cheung GSP. Electropolishing enhances the resistance of nickel-titanium rotary files to corrosion fatigue failure in hypochlorite. J Endod. 2010;36:264–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ryszard Rokicki
    • 1
  • Waseem Haider
    • 2
  • Tadeusz Hryniewicz
    • 3
  1. 1.ElectrobrightMacungieUSA
  2. 2.Mechanical Engineering DepartmentUniversity of Texas-Pan AmericanEdinburgUSA
  3. 3.Surface Electrochemistry DivisionPolitechnika KoszalinskaKoszalinPoland

Personalised recommendations