Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 9, pp 2303–2313 | Cite as

Hyaluronic acid/mildly crosslinked alginate hydrogel as an injectable tissue adhesion barrier

  • Seung Yeon Na
  • Se Heang Oh
  • Kyu Sang Song
  • Jin Ho LeeEmail author
Article

Abstract

Although hyaluronic acid (HA) has been conventionally utilized as a tissue adhesion barrier material, its rapid clearance in the body still remains as a big challenge in the clinical practice. In this study, we prepared a hydrogel of HA embedded in mildly crosslinked alginate (HA/mcALG hydrogel), which is injectable, easily covers injured tissues, and remains stably at the applied site during wound healing (by muco-adhesive HA embedded in the network structure of the mcALG hydrogel). The HA/mcALG hydrogel was highly effective for the prevention of peritoneal tissue adhesion compared to HA and mcALG hydrogels, and did not lead to any abnormal tissue responses during wound healing. The HA/mcALG hydrogel can be a good candidate as an injectable tissue adhesion barrier for clinical applications.

Keywords

Hyaluronic Acid Injury Site Injured Tissue Applied Site Tissue Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0001804).

References

  1. 1.
    Dunn R, Lyman MD, Edelman PG, Campbell PK. Evaluation of the SprayGel adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril. 2001;75:411–6.CrossRefGoogle Scholar
  2. 2.
    Menzies D, Ellis H. Intestinal obstruction from adhesions: how big is the problem? Ann R Coll Surg Engl. 1990;72:60–3.Google Scholar
  3. 3.
    De Laco PA, Stefanetti M, Pressato D, Piana S, Donà M, Pavesio A, Bovicelli L. A novel hyaluronan-based get in laparoscopic adhesion prevention: preclinical evaluation in an animal model. Fertil Steril. 1998;69:31823.Google Scholar
  4. 4.
    Yeo Y, Kohane DS. Polymers in the prevention of peritoneal adhesions. Eur J Pharm Biopharm. 2008;68:57–66.CrossRefGoogle Scholar
  5. 5.
    Brüggmann D, Tchartchian G, Wallwiener M, Münstedt K, Tinneberg HR, Hackethal A. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int. 2010;107:769–75.Google Scholar
  6. 6.
    Ray NF, Denton WG, Thamer M, Henderson SC, Perry S. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg. 1998;186:1–9.CrossRefGoogle Scholar
  7. 7.
    Falk K, Lindman B, Bengmark S, Larsson K, Holmdahl L. Sodium polyacrylate potentiates the anti-adhesion effect of a cellulose-derived polymer. Biomaterials. 2001;22:2185–90.CrossRefGoogle Scholar
  8. 8.
    von Dembowski T. Über die Ursachen der peritonealen Adhäsionen nach chirurgischen Eingriffen mit Rücksicht auf die Frage des Ileus nach Laparotomien. Langenbecks Arch Chir. 1889;37:745.Google Scholar
  9. 9.
    Brochhausen C, Schmitt VH, Rajab TK, Planck CNE, Krämer B, Wallwiener M, Hierlemann H, Kirkpatrick CJ. Intraperitoneal adhesions: an ongoing challenge between biomedical engineering and the life sciences. J Biomed Mater Res A. 2011;98A:143–56.CrossRefGoogle Scholar
  10. 10.
    Diamond MP, DeCherney AH. Pathogenesis of adhesion formation/reformation: application to reproductive pelvic surgery. Microsurgery. 1987;8:103–7.CrossRefGoogle Scholar
  11. 11.
    diZerega GS. Contemporary adhesion prevention. Fertil Steril. 1994;61:219–35.Google Scholar
  12. 12.
    Cho WJ, Oh SH, Kim IG, Lee CS, Lee JH. Prevention of postsurgical tissue adhesion by a bi-layer membrane consisting of adhesion and lubrication layers. Tissue Eng Regen Med. 2010;7:49–56.Google Scholar
  13. 13.
    Lauder CIW, Garcea G, Strickland A, Maddern GJ. Abdominal adhesion prevention: still a sticky subject. Dig Surg. 2010;27:347–58.CrossRefGoogle Scholar
  14. 14.
    Al-Musawi D, Thompson JN. Adhesion prevention: state of art. Gynaecol Endosc. 2001;10:123–30.CrossRefGoogle Scholar
  15. 15.
    Liu Y, Shu XZ, Prestwich GD. Reduced postoperative intraabdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil Steril. 2007;87:940–8.CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials. 2011;32:4725–36.CrossRefGoogle Scholar
  17. 17.
    Oh SH, Kim JK, Song KS, Noh SM, Ghil SH, Yuk SH, Lee JH. Prevention of postsurgical tissue adhesion by anti-inflammatory drug-loaded pluronic mixtures with sol–gel transition behavior. J Biomed Mater Res A. 2005;72A:306–16.CrossRefGoogle Scholar
  18. 18.
    Czaja WK, Young DJ, Kawecki M, Brown RM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12.CrossRefGoogle Scholar
  19. 19.
    Falabella CA, Melendez MM, Weng LH, Chen WL. Novel macromolecular crosslinking hydrogel to reduce intra-abdominal intestinal adhesion. J Surg Res. 2010;159:772–8.CrossRefGoogle Scholar
  20. 20.
    Yeo Y, Bellas E, Highley CB, Langer R, Kohane DS. Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue type plasminogen activator in a rabbit repeated-injury model. Biomaterials. 2007;28:3704–13.CrossRefGoogle Scholar
  21. 21.
    Habara T, Nakatsuka M, Konishi H, Asagiri K, Noguchi S, Kudo T. The biological effects of antiadhesion agents on activated RAW264.7 macrophages. J Biomed Mater Res. 2002;61:628–33.CrossRefGoogle Scholar
  22. 22.
    Adhesion Study Group. Reduction of postoperative pelvic adhesions with intraperitoneal 32 % dextran 70: a prospective, randomized clinical trial. Fertil Steril. 1983;40:612–9.Google Scholar
  23. 23.
    Urman B, Gomel V. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model. Fertil Steril. 1991;56:563–7.Google Scholar
  24. 24.
    Park JS, Cha SJ, Kim BG, Choi YS, Kwon GY, Kang H, An SS. An assessment of the effects of a hyaluronan-based solution on reduction of postsurgical adhesion formation in rats: a comparative study of hyaluronan-based solution and two film barriers. J Surg Res. 2011;168:49–55.CrossRefGoogle Scholar
  25. 25.
    Steinleitner A, Lambert H, Kazensky C, Cantor B. Poloxamer 407 as an intraperitoneal barrier material for the prevention of postsurgical adhesion formation and reformation in rodent models for reproductive surgery. Obstet Gynecol. 1991;77:48–52.Google Scholar
  26. 26.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.Google Scholar
  27. 27.
    Peck LS, Goldberg EP. Polymer solutions and films as tissue-protective and barrier adjuvants. In: diZerega GS, editor. Peritoneal surgery. New York: Springer; 2000. p. 499–520.CrossRefGoogle Scholar
  28. 28.
    Seo NM, Ko JH, Park YH, Chun HJ. In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med. 2011;8:16–22.Google Scholar
  29. 29.
    Yeo Y, Highley CB, Bellas E, Ito T, Marini R, Langer R, Kohane DS. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials. 2006;27:4698–705.CrossRefGoogle Scholar
  30. 30.
    Shirai Y, Hashimoto K, Irie S. Formation of effective channels in alginate gel for immobilization of anchorage-dependent animal cells. Appl Microbiol Biotechnol. 1989;31:342–5.CrossRefGoogle Scholar
  31. 31.
    Chen-Chow PC, Frank SG. In vitro release of lidocaine from Pluronic F-127. Int J Pharm. 1981;8:88–99.Google Scholar
  32. 32.
    Bhardwaj R, Blanchard J. Controlled-release delivery system for the α-MSH analog melanotan-I using Poloxamer 407. J Pharm Sci. 1996;85:915–9.CrossRefGoogle Scholar
  33. 33.
    Jaacobi Y, Israel AA, Goldberg EP. Prevention of postoperative abdominal adhesions by tissue precoating with polymer solutions. J Surg Res. 1993;55:422–6.CrossRefGoogle Scholar
  34. 34.
    Chamberlain AHL, Angell P, Campbell HS. Staining procedures for characterising biofilms in corrosion investigations. Br Corros J. 1988;23:197–9.Google Scholar
  35. 35.
    Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997;36:200–8.CrossRefGoogle Scholar
  36. 36.
    Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J Control Release. 1999;58:21–8.CrossRefGoogle Scholar
  37. 37.
    Ellis H, Harrison W, Hugh TB. The healing of peritoneum under normal and pathological conditions. Br J Surg. 1965;52:471–6.CrossRefGoogle Scholar
  38. 38.
    Hubbard TB, Khan MZ, Carag VR, Albites VE, Hricko GM. The pathology of peritoneal repair: its relation to the formation of adhesions. Ann Surg. 1967;165:908–16.CrossRefGoogle Scholar
  39. 39.
    Koçak I, Unlu C, Akcan Y, Yakin K. Reduction of adhesion formation with cross linked hyaluoronic acid after peritoneal surgery in rats. Fertil Steril. 1999;72:873–8.CrossRefGoogle Scholar
  40. 40.
    Nilsson K, Scheirer W, Merten OW, Ostberg L, Liehl E, Katinger HWD, Mosbach K. Entrapment of animal cells for production of mono-clonal antibodies and other biomolecules. Nature. 1983;402:629–30.CrossRefGoogle Scholar
  41. 41.
    Kim GH, Kang YM, Kang KN, Kim DY, Kim H. Wound dressings for wound healing and drug delivery. Tissue Eng Regen Med. 2011;8:1–7.Google Scholar
  42. 42.
    Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:11298–303.CrossRefGoogle Scholar
  43. 43.
    Shepard S, Becker H, Hartmann JX. Using hyaluronic acid to create a fetal-like environment in vitro. Ann Plast Surg. 1996;36:65–9.CrossRefGoogle Scholar
  44. 44.
    King SR, Hickerson WL, Proctor KG. Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery. 1991;109:76–84.Google Scholar
  45. 45.
    Amiel D, Ishizue K, Billings E Jr, Wiig M, Vande Berg J, Akeson WH, Gelberman R. Hyaluronan in flexor tendon repair. J Hand Surg [Am]. 1989;14:837–43.CrossRefGoogle Scholar
  46. 46.
    Hagberg L, Gerdin B. Sodium hyaluronate as an adjunct in adhesion prevention after flexor tendon surgery in rabbits. J Hand Surg [Am]. 1992;17:935–41.CrossRefGoogle Scholar
  47. 47.
    Burns JW, Skinner K, Colt J, Sheidlin A, Bronson R, Yaacobi Y, Goldberg EP. Prevention of tissue injury and postsurgical adhesions by precoating tissues with hyaluronic acid solutions. J Surg Res. 1995;59:644–52.CrossRefGoogle Scholar
  48. 48.
    Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7:79–89.CrossRefGoogle Scholar
  49. 49.
    Johns DB, Rodgers KE, Donahue WD, Kiorpes TC, diZerega GS. Reduction of adhesion formation by postoperative administration of ionically cross-linked hyaluronic acid. Fertil Steril. 1997;68:37–42.CrossRefGoogle Scholar
  50. 50.
    Li Y, Li H, Shu XZ, Gray SD, Prestwich GD. Reduced post-operative intra-abdominal adhesions using Carbylan TM-SX, a semi-synthetic glycosaminoglycan hydrogel. Fertil Steril. 2005;83:1275–83.CrossRefGoogle Scholar
  51. 51.
    Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid. J Biomed Mater Res. 1999;47:152–69.CrossRefGoogle Scholar
  52. 52.
    Leach RE, Burns JW, Dawe EJ, SmithBarbour MD, Diamond MP. Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel. Fertil Steril. 1998;69:415–8.CrossRefGoogle Scholar
  53. 53.
    Kong CG, In Y, Cho HM, Suhl KH. The effects of applying adhesion prevention gel on the range of motion and pain after TKA. Knee. 2011;18:104–7.CrossRefGoogle Scholar
  54. 54.
    Yuk SH, Cho SH, Lee HB. Electric current-sensitive drug delivery systems using sodium alginate/polyacrylic acid composites. Pharm Res. 1992;9:955–7.CrossRefGoogle Scholar
  55. 55.
    Birnbaum S, Pendleton R, Larsson PO, Mosbach K. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol Lett. 1981;3:393–400.CrossRefGoogle Scholar
  56. 56.
    Park K, Hwang JY, Kim C, Kang JY, Chun HJ, Han DK. Dedifferentiated chondrocyte culture using alginate microbead prepared from microfluidic technique. Tissue Eng Regen Med. 2009;6:353–9.Google Scholar
  57. 57.
    Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. J Biomater Sci Polymer Edn. 2005;16:933–47.CrossRefGoogle Scholar
  58. 58.
    Bucke C. Cell immobilization in calcium alginate. Methods Enzymol. 1987;135:175–89.CrossRefGoogle Scholar
  59. 59.
    INTERCEED (TC7) Adhesion Barrier Study Group. Prevention of postsurgical adhesions by Interceed (TC7), an absorbable adhesion barrier: a prospective, randomized multicenter clinical study. Fertil Steril. 1989;51:933–8.Google Scholar
  60. 60.
    Moyer KE, Davis A, Saggers GC, Mackay DR, Ehrlich HP. Wound healing: the role of gap junctional communication in rat granulation tissue maturation. Exp Mol Pathol. 2002;72:10–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Seung Yeon Na
    • 1
  • Se Heang Oh
    • 1
  • Kyu Sang Song
    • 2
  • Jin Ho Lee
    • 1
    Email author
  1. 1.Department of Advanced MaterialsHannam UniversityDaejeonRepublic of Korea
  2. 2.Department of Pathology, School of MedicineChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations