Structural and biomechanical characterizations of porcine myocardial extracellular matrix

  • Bo Wang
  • Mary E. Tedder
  • Clara E. Perez
  • Guangjun Wang
  • Amy L. de Jongh Curry
  • Filip To
  • Steven H. Elder
  • Lakiesha N. Williams
  • Dan T. Simionescu
  • Jun Liao
Article

Abstract

Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson’s trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat’s pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering.

References

  1. 1.
    Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, et al. Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–171. doi:CIRCULATIONAHA.106.179918,10.1161/CIRCULATIONAHA.106.179918.CrossRefGoogle Scholar
  2. 2.
    Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A, et al. Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res. 1998;82(11):1130–8.CrossRefGoogle Scholar
  3. 3.
    Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000;46(2):250–6. doi:S0008-6363(00)00032-8.CrossRefGoogle Scholar
  4. 4.
    Kelly D, Khan S, Cockerill G, Ng LL, Thompson M, Samani NJ et al. Circulating stromelysin-1 (MMP-3): a novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur J Heart Fail. 2008;10(2):133–9. doi:10.1016/j.ejheart.2007.12.009.Google Scholar
  5. 5.
    Sharma R, Raghubir R. Stem cell therapy: a hope for dying hearts. Stem Cells Dev. 2007;16(4):517–36.CrossRefGoogle Scholar
  6. 6.
    Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998;98(25):2800–4.CrossRefGoogle Scholar
  7. 7.
    Grauss RW, Winter EM, van Tuyn J, Pijnappels DA, Steijn RV, Hogers B, et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol. 2007;293(4):H2438–47.Google Scholar
  8. 8.
    Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation. 2003;107(7):929–34.CrossRefGoogle Scholar
  9. 9.
    Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 2005;11(11–12):1678–87.CrossRefGoogle Scholar
  10. 10.
    Barandon L, Couffinhal T, Dufourcq P, Alzieu P, Daret D, Deville C, et al. Repair of myocardial infarction by epicardial deposition of bone-marrow-cell-coated muscle patch in a murine model. Ann Thorac Surg. 2004;78(4):1409–17.CrossRefGoogle Scholar
  11. 11.
    Aboulafia-Etzion S, Leor J, Barbash IM, Battler A. Fixing a failing heart: molecular and cellular approaches. Harefuah. 1999;136(4):284–8.Google Scholar
  12. 12.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.CrossRefGoogle Scholar
  13. 13.
    Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004;25(9):1639–47.CrossRefGoogle Scholar
  14. 14.
    Thompson RB, Emani SM, Davis BH, van den Bos EJ, Morimoto Y, Craig D et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation. 2003;108 Suppl 1:II264–71.Google Scholar
  15. 15.
    Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol. 1999;277(2 Pt 2):H433–44.Google Scholar
  16. 16.
    Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64(5):580–9.CrossRefGoogle Scholar
  17. 17.
    Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005;11(5–6):803–13.CrossRefGoogle Scholar
  18. 18.
    Birla RK, Borschel GH, Dennis RG. In vivo conditioning of tissue-engineered heart muscle improves contractile performance. Artif Organs. 2005;29(11):866–75.CrossRefGoogle Scholar
  19. 19.
    Borschel GH, Dow DE, Dennis RG, Brown DL. Tissue-engineered axially vascularized contractile skeletal muscle. Plast Reconstr Surg. 2006;117(7):2235–42.CrossRefGoogle Scholar
  20. 20.
    Vouyouka AG, Powell RJ, Ricotta J, Chen H, Dudrick DJ, Sawmiller CJ, et al. Ambient pulsatile pressure modulates endothelial cell proliferation. J Mol Cell Cardiol. 1998;30(3):609–15.CrossRefGoogle Scholar
  21. 21.
    Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. The Annals of thoracic surgery. 2007;83(2):648–54. doi:10.1016/j.athoracsur.2006.06.085.
  22. 22.
    Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol. 2007;49(23):2292–300.CrossRefGoogle Scholar
  23. 23.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21. doi:10.1002/jbm.10167.CrossRefGoogle Scholar
  24. 24.
    Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(2):226–36. doi:10.1002/wnan.26.CrossRefGoogle Scholar
  25. 25.
    Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S, et al. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg. 2002;124(6):1157–64.CrossRefGoogle Scholar
  26. 26.
    Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation. 2002;106(12 Suppl 1):I176–82.Google Scholar
  27. 27.
    Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater. 2008;7(12):1003–10.CrossRefGoogle Scholar
  28. 28.
    Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap. 2001;30(2):183–91.Google Scholar
  29. 29.
    Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.CrossRefGoogle Scholar
  30. 30.
    Grad S, Zhou L, Gogolewski S, Alini M. Chondrocytes seeded onto poly (l/dl-lactide) 80/20% porous scaffolds: a biochemical evaluation. J Biomed Mater Res A. 2003;66(3):571–9. doi:10.1002/jbm.a.10007.CrossRefGoogle Scholar
  31. 31.
    Weber B, Emmert MY, Schoenauer R, Brokopp C, Baumgartner L, Hoerstrup SP. Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 33(3):307–15. doi:10.1007/s00281-011-0258-8.
  32. 32.
    Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308. doi:10.1089/107632702753725058.CrossRefGoogle Scholar
  33. 33.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6. doi:10.1016/S0140-6736(06)68438-9.Google Scholar
  34. 34.
    Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J Surg. 2007;31(4):682–9. doi:10.1007/s00268-006-0731-z.CrossRefGoogle Scholar
  35. 35.
    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.Google Scholar
  36. 36.
    Liao J, Joyce EM, Sacks MS. Effects of decellularization on mechanical and structural properties of the porcine aortic valve leaflets. Biomaterials. 2008;29(8):1065–74.CrossRefGoogle Scholar
  37. 37.
    Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng. 2005;11(5–6):778–86.CrossRefGoogle Scholar
  38. 38.
    Borschel GH, Dennis RG, Kuzon WM, Jr. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plastic Reconstr Surg. 2004;113(2):595–602 (discussion 3–4).Google Scholar
  39. 39.
    Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res. 1995;29(8):977–85.CrossRefGoogle Scholar
  40. 40.
    Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000;102(19 Suppl 3):III56–61.Google Scholar
  41. 41.
    Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004;12(3–4):367–77. doi:10.1016/j.trim.2003.12.016.Google Scholar
  42. 42.
    Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10(12):1717–28. doi:10.1517/14712598.2010.534079.
  43. 43.
    Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E. The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng H. 2008;222(1):129–43.CrossRefGoogle Scholar
  44. 44.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.CrossRefGoogle Scholar
  45. 45.
    Wang B, Borazjani A, Tahai M, Curry AL, Simionescu DT, Guan J et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94(4):1100–10. doi:10.1002/jbm.a.32781.
  46. 46.
    Godier-Furnemont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci USA 108(19):7974–9.Google Scholar
  47. 47.
    Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Ann Review Biomed Eng 13:27–53.Google Scholar
  48. 48.
    Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16(3):525–32.Google Scholar
  49. 49.
    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.Google Scholar
  50. 50.
    Witzenburg C, Raghupathy R, Kren SM, Taylor DA, Barocas VH. Mechanical changes in the rat right ventricle with decellularization. J Biomech.Google Scholar
  51. 51.
    Streeter D, Powers WE, Ross A, Torrent-Guasp F. Three-Dimensional Fiber Orientation in the Mammalian Left Ventricular Wall. Cardiovascular System Dynamics. Cambridge: M.I.T Press; 1978. p. 73.Google Scholar
  52. 52.
    Streeter DD Jr, Hanna WT. Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res. 1973;33(6):656–64.CrossRefGoogle Scholar
  53. 53.
    Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24(3):339–47.CrossRefGoogle Scholar
  54. 54.
    Macchiarelli G, Ohtani O. Endomysium in left ventricle. Heart (British Cardiac Society). 2001;86(4):416.CrossRefGoogle Scholar
  55. 55.
    Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.CrossRefGoogle Scholar
  56. 56.
    Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223–53.CrossRefGoogle Scholar
  57. 57.
    Humphery JD. Cardiovascular Solid Mechanics. Berlin: Springer; 2002.Google Scholar
  58. 58.
    Strokan V, Molne J, Svalander CT, Breimer ME. Heterogeneous expression of Gal alpha1-3Gal xenoantigen in pig kidney: a lectin and immunogold electron microscopic study. Transplantation. 1998;66(11):1495–503.CrossRefGoogle Scholar
  59. 59.
    Azimzadeh A, Wolf P, Thibaudeau K, Cinqualbre J, Soulillou JP, Anegon I. Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells. Transplantation. 1997;64(8):1166–74.CrossRefGoogle Scholar
  60. 60.
    Tedder ME, Liao J, Weed B, Stabler C, Zhang H, Simionescu A, et al. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A. 2009;15(6):1257–68.CrossRefGoogle Scholar
  61. 61.
    Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;22(14):1943–51. doi:S0142961200002209.CrossRefGoogle Scholar
  62. 62.
    Sierad LN, Simionescu A, Albers C, Chen J, Maivelett J, Tedder ME et al. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc Eng Technol. 2009;1(2):138–53. doi:10.1007/s13239-010-0014-6.Google Scholar
  63. 63.
    Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124(2):214–22.CrossRefGoogle Scholar
  64. 64.
    Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res. 1994;74(6):1065–70.CrossRefGoogle Scholar
  65. 65.
    Fung YC. Biomechanics: mechanical properties of living tissues. New York: Springer; 1981.Google Scholar
  66. 66.
    Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS. 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol. 1999;517(Pt 3):831–7. doi:PHY_9009.CrossRefGoogle Scholar
  67. 67.
    Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol. 2010;48(3):490–6. doi:10.1016/j.yjmcc.2009.08.003.Google Scholar
  68. 68.
    Baraki H, Tudorache I, Braun M, Höffler K, Görler A, Lichtenberg A, et al. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009;30(31):6240–6.CrossRefGoogle Scholar
  69. 69.
    Goo HC, Hwang YS, Choi YR, Cho HN, Suh H. Development of collagenase-resistant collagen and its interaction with adult human dermal fibroblasts. Biomaterials. 2003;24(28):5099–113. doi:S0142961203004319.CrossRefGoogle Scholar
  70. 70.
    Guan J, Wang F, Li Z, Chen J, Guo X, Liao J et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 2011;32(24):5568–80. doi:10.1016/j.biomaterials.2011.04.038.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bo Wang
    • 1
  • Mary E. Tedder
    • 2
  • Clara E. Perez
    • 1
  • Guangjun Wang
    • 1
  • Amy L. de Jongh Curry
    • 3
  • Filip To
    • 1
  • Steven H. Elder
    • 1
  • Lakiesha N. Williams
    • 1
  • Dan T. Simionescu
    • 2
  • Jun Liao
    • 1
  1. 1.Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Computational Manufacturing and DesignCAVS, Mississippi State UniversityStarkvilleUSA
  2. 2.Department of BioengineeringClemson UniversityClemsonUSA
  3. 3.Department of Biomedical EngineeringUniversity of MemphisMemphisUSA

Personalised recommendations