Electrospinning collagen and hyaluronic acid nanofiber meshes

  • Rachael L. Fischer
  • Michael G. McCoy
  • Sheila A. Grant
Article

Abstract

Collagen and hyaluronic acid (HA) are main components of the extracellular matrix and have been utilized in electrospinning; a technique that creates nanosized fibers for tissue scaffolds. A collagen/HA polymer solution was electrospun into a scaffold material for osteoporosis patients who have reduced bone strength. To synthesize nanofibers, a high voltage was applied to the polymer solution to draw out nanofibers that were collected on a ground plate as a uniform mesh. The meshes were then crosslinked to render them insoluble and conjugated with gold nanoparticles to promote biocompatibility. Characterization of the mesh was performed using scanning electron microscope, electron dispersive spectroscopy and fourier transform infrared spectroscopy. A WST-1 assay determined the potential biocompatibility. The results show that collagen/HA scaffolds were developed that were insoluble in aqueous solutions and promoted cellular attachment that could be used as a tissue engineered scaffold to promote cell growth.

References

  1. 1.
    WHO. WHO scientific group on the assessment of osteoporosis at primary health care level. World Health Organization Technical Report Series. 2004:1–17.Google Scholar
  2. 2.
    Hosoi T. Genetic aspects of osteoporosis. J Bone Miner Metab. 2010;28(6):601–7.CrossRefGoogle Scholar
  3. 3.
    Kaveh K, Ibrahim R, Emadi M, Bakar MZA, Ibrahim TA. Osteoporosis and bone health. J Anim Vet Adv. 2010;9(6):1048–54.CrossRefGoogle Scholar
  4. 4.
    Ritchie RO. How does human bone resist fracture? Ann NY Acad Sci. 2010;1192:72–80.CrossRefGoogle Scholar
  5. 5.
    Cleland JGF, Witte K, Steel S. Calcium supplements in people with osteoporosis. BMJ. 2010;341(7767):260.Google Scholar
  6. 6.
    Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23(4):1205–12. doi:10.1016/s0142-9612(01)00235-6.CrossRefGoogle Scholar
  7. 7.
    Wang TW, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 2009;5(7):2371–84. doi:10.1016/j.actbio.2009.03.033.CrossRefGoogle Scholar
  8. 8.
    Liu Y, Ma G, Fang D, Xu J, Zhang H, Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr Polym. 2011;83(2):1011–5. doi:10.1016/j.carbpol.2010.08.061.CrossRefGoogle Scholar
  9. 9.
    Greiner A, Wendorff JH, Yarin AL, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol. 2006;71(4):387–93.CrossRefGoogle Scholar
  10. 10.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C. 2007;27(3):504–9.CrossRefGoogle Scholar
  11. 11.
    Bai J, Li Y, Yang S, Du J, Wang S, Zheng J, et al. A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Commun. 2007;141(5):292–5.CrossRefGoogle Scholar
  12. 12.
    Cui W, Li X, Zhou S, Weng J. Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci. 2007;103(5):3105–12.CrossRefGoogle Scholar
  13. 13.
    Shin YM, Hogman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42(25):9955–67.CrossRefGoogle Scholar
  14. 14.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.CrossRefGoogle Scholar
  15. 15.
    Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing;2005.Google Scholar
  16. 16.
    He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26(36):7606–15.CrossRefGoogle Scholar
  17. 17.
    Kim TG, Park TG. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog. 2006;22(4):1108–13.CrossRefGoogle Scholar
  18. 18.
    Vassalli T. Development of electrospun synthetic bioabsorbable fibers for a novel bionanocomposite ernia repair material. University of Missouri Master’s Thesis. 2008.Google Scholar
  19. 19.
    Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4(6):1611–9. doi:10.1016/j.actbio.2008.06.008.CrossRefGoogle Scholar
  20. 20.
    Tan W, Twomey J, Guo D, Madhavan K, Li M. Evaluation of nanostructural, mechanical, and biological properties of collagennanotube composites. IEEE Trans Nanobiosci. 2010;9(2):111–20. doi:10.1109/tnb.2010.2043367.CrossRefGoogle Scholar
  21. 21.
    Hsu FY, Hung YS, Liou HM, Shen CH. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomater. 2010;6(6):2140–7.CrossRefGoogle Scholar
  22. 22.
    Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer. 2009;50(15):3778–85. doi:10.1016/j.polymer.2009.05.035.CrossRefGoogle Scholar
  23. 23.
    Homenick CM, Sheardown H, Adronov A. Reinforcement of collagen with covalently-functionalized single-walled carbon nanotube crosslinkers. J Mater Chem. 2010;20(14):2887–94. doi:10.1039/b925799c.CrossRefGoogle Scholar
  24. 24.
    Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials. 2006;27(20):3782–92. doi:10.1016/j.biomaterials.2006.02.037.CrossRefGoogle Scholar
  25. 25.
    Cozad MJ, Bachman SL, Grant SA. Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing. J Biomed Mater Res Part A. 2011;99A(3):426–34.CrossRefGoogle Scholar
  26. 26.
    Whelove O. Development of gold nanoparticle conjugated polyethylene terephthalate for improved biocompatibility in hernia repair. University of Missouri Master’s Thesis. 2010.Google Scholar
  27. 27.
    Deeken CR, Fox DB, Bachman SL, Ramshaw BJ, Grant SA. Characterization of bonanocomposite scaffolds comprised on amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon. J Biomed Mater Res Part B Appl Biomater. 2011;97(B(2)):334–44.CrossRefGoogle Scholar
  28. 28.
    Barnes CP, Pemble CW IV, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13(7):1593–605. doi:10.1089/ten.2006.0292.CrossRefGoogle Scholar
  29. 29.
    Chemblink. Online Database of Chemicals from Around the World. 2011. www.chemblink.com. Accessed 10/8/2011.
  30. 30.
    Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811–8.CrossRefGoogle Scholar
  31. 31.
    Camacho NP, West P, Torzilli PA, Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers. 2001;62(1):1–8.CrossRefGoogle Scholar
  32. 32.
    Liu KZ, Jackson M, Sowa MG, Ju HS, Dixon IMC, Mantsch HH. Modification of the extracellular matrix following myocardial infraction monitored by FTIR spectroscopy. Biochim Biophys Acta. 2006;1335(2):73–7.Google Scholar
  33. 33.
    Boskey A, Camacho NP. FT-IR imaging of native and tissue- engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.CrossRefGoogle Scholar
  34. 34.
    Muyonga JH, Cole CGB, Duodu KG. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile Perch. Food Chem. 2004;86(3):325–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rachael L. Fischer
    • 1
  • Michael G. McCoy
    • 1
  • Sheila A. Grant
    • 2
  1. 1.Department of Biological EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Department of Biological EngineeringUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations