Advertisement

Gallium containing glass polyalkenoate anti-cancerous bone cements: glass characterization and physical properties

  • A. W. Wren
  • A. Coughlan
  • L. Placek
  • M. R. Towler
Article

Abstract

A gallium (Ga) glass series (0.48SiO2–0.40ZnO–0.12CaO, with 0.08 mol% substitution for ZnO) was developed to formulate a Ga-containing Glass Polyalkenoate Cement (GPC) series. Network connectivity (NC) and X-ray Photoelectron Spectroscopy (XPS) was employed to investigate the role of Ga3+ in the glass, where it is assumed to act as a network modifier. Ga-GPC series was formulated with E9 and E11 polyacrylic acid (PAA) at 50, 55 and 60 wt% additions. E11 working times (T w ) ranged from 68 to 96 s (Lcon.) and 106 s for the Ga-GPCs (LGa-1 and LGa-2). Setting times (T s ) ranged from 104 to 226 s (Lcon.) and 211 s for LGa-1 and LGa-2. Compression (σc) and biaxial flexural (σf) testing were conducted where Lcon. increased from 62 to 68 MPa, LGa-1 from 14 to 42 MPa and LGa-2 from 20 to 47 MPa in σc over 1–30 days. σf testing revealed that Lcon. increased from 29 to 42 MPa, LGa-1 from 7 to 32 MPa and LGa-2 from 12 to 36 MPa over 1–30 days.

Keywords

Network Connectivity Bioactive Glass Network Modifier Glass Series Gallium Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hench L, Peitl O, Zanotto ED. Highly bioactive P2O5–Na2O–CaO–SiO2 glass ceramics. J Non Cryst Sol. 2001;292:115–26.CrossRefGoogle Scholar
  2. 2.
    Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17:967–78.CrossRefGoogle Scholar
  3. 3.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  4. 4.
    Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.CrossRefGoogle Scholar
  5. 5.
    Heikkilä JT, Aho AJ, Kangasniemi I, Yli-Urpo A. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials. 1996;17(18):1755–60.CrossRefGoogle Scholar
  6. 6.
    Daglilar S, Erkan ME, Gunduz O, Ozyegin LS, Salman S, Agathopoulos S, Oktar FN. Water resistance of bone-cements reinforced with bioceramics. Mater Lett. 2007;61(11–12):2295–8.CrossRefGoogle Scholar
  7. 7.
    Lacefleld WR, Hench LL. The bonding of Bioglass® to a cobalt-chromium surgical implant alloy. Biomaterials. 1986;7(2):104–8.CrossRefGoogle Scholar
  8. 8.
    Fu Q, Rahaman MN, Sonny Bal B, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 2008;4(6):1854–64.CrossRefGoogle Scholar
  9. 9.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.CrossRefGoogle Scholar
  10. 10.
    Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jérôme R. Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng, C. 2005;25:123–31.CrossRefGoogle Scholar
  11. 11.
    Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q. Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds. Acta Biomater. 2008;4(2):387–96.CrossRefGoogle Scholar
  12. 12.
    Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5-Polycaprolactone composite scaffolds via salt-leaching. Compos Struct. 2010;92(8):1823–32.CrossRefGoogle Scholar
  13. 13.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.CrossRefGoogle Scholar
  14. 14.
    Chen Q-Z, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3(4):551–62.CrossRefGoogle Scholar
  15. 15.
    Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:7964–73.CrossRefGoogle Scholar
  16. 16.
    Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A. Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 2009;5(1):374–80.CrossRefGoogle Scholar
  17. 17.
    Hatton PV, Hurrell-Gillingham K, Brook IM. Biocompatability of glass ionomer bone cements. J Dent. 2006;34:598–601.CrossRefGoogle Scholar
  18. 18.
    Nicholson JW, Wilson AD. Chemistry of solid state materials Vol 3: acid–base cements—their biomedical and industrial applications. Cambridge: Cambridge University; 1993.Google Scholar
  19. 19.
    Billington RW, Williams JA, Pearson GJ. Ion processes in glass ionomer cements. J Dent. 2006;34:544–55.CrossRefGoogle Scholar
  20. 20.
    Carter DH, Sloan P, Brook IM, Hatton PV. Role of exchanged ions in the integration of ionomeric (glass polyalkenoate) bone substitutes. Biomaterials. 1997;18:459–66.CrossRefGoogle Scholar
  21. 21.
    Van Duinen RNB, Kleverlaan CJ, de Gee AJ, Werner A, Feilzer AJ. Early and long-term wear of ‘Fast-set’ conventional glass–ionomer cements. Dent Mater. 2005;21(8):716–20.CrossRefGoogle Scholar
  22. 22.
    Cho S, Cheng AC. A review of glass ionomer restorations in the primary dentition. J Can Dent Assoc. 1999;65:491–5.Google Scholar
  23. 23.
    Smith DC. Development of glass–ionomer cement systems. Biomaterials. 1998;19:6467–78.CrossRefGoogle Scholar
  24. 24.
    Tyas MJ, Burrow MF. Adhesive restorative materials: a review. Aust Dent J. 2004;49(3):112–21.CrossRefGoogle Scholar
  25. 25.
    DeBruyne MAA, DeMoor RJG. The use of glass ionomer cements in both conventional and surgical endodontics. Int Endo J. 2004;37:91–104.CrossRefGoogle Scholar
  26. 26.
    Firling CE, Hill TA, Severson AR. Aluminium toxicity perturbs long bone calcification in the embryonic chick. Arch Toxicol. 1999;73:359–66.CrossRefGoogle Scholar
  27. 27.
    Hoang-Xuan K, Perrotte P, Dubas F, Philippon J, Poisson FM. Myoclonic encephalopathy after exposure to aluminium. Lancet. 1996;347:910–1.CrossRefGoogle Scholar
  28. 28.
    Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, Trinka E, Iglseder B. Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery: a case report. Hum Pathol. 2001;32(10):1136–9.CrossRefGoogle Scholar
  29. 29.
    Boyd D, Clarkin OM, Wren AW, Towler MR. Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomater. 2008;4(2):425–31.CrossRefGoogle Scholar
  30. 30.
    Boyd D, Towler MR. The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J Mater Sci Mater Med. 2005;16:843–50.CrossRefGoogle Scholar
  31. 31.
    Boyd D, Towler MR, Watts S, Hill R, Wren AW, Clarkin OM. The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. J Mater Sci Mater Med. 2008;19:953–7.CrossRefGoogle Scholar
  32. 32.
    Boyd D, Towler MR, Wren AW, Clarkin OM. Comparison of an experimental bone cement with surgical simplex p, spineplex and cortoss. J Mater Sci Mater Med. 2007;19(4):1745–52.CrossRefGoogle Scholar
  33. 33.
    Wren AW, Kidari A, Cummins NM, Towler MR. A spectroscopic investigation into the setting and mechanical properties of titanium containing glass ionomer cements. J Mater Sci Mater Med. 2010;21:2355–64.CrossRefGoogle Scholar
  34. 34.
    Wren AW, Laffir FR, Kidari A, Towler MR. The structural role of titanium in Ca–Sr–Zn–Si/Ti glasses for medical applications. J Non Cryst Sol. 2010;357:1021–6.CrossRefGoogle Scholar
  35. 35.
    Wren AW, Cummins NM, Laffir FR, Hudson SP, Towler MR. The bioactivity and ion release of titanium-containing glass polyalkenoate cements for medical applications. J Mater Sci Mater Med. 2011;22:19–28.CrossRefGoogle Scholar
  36. 36.
    Ortega R, Suda A, Devès G. Nuclear microprobe imaging of gallium nitrate in cancer cells. Nucl Instrum Methods Phys Res Sect B Beam Inter Mater Atoms. 2003;210:364–7.CrossRefGoogle Scholar
  37. 37.
    Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health. 2010;7(52):337–61.Google Scholar
  38. 38.
    Collery P, Keppler B, Madoulet C, Desoize B. Gallium in cancer treatment. Crit Rev Oncol Hematol. 2002;42(3):283–96.CrossRefGoogle Scholar
  39. 39.
    International Organization for Standardization 9917. Dental water based cements (E), in Case Postale 56. 1991: Geneva, Switzerland. p. CH-11211.Google Scholar
  40. 40.
    Williams JA, Billington RW, Pearson GJ. The effect of the disc support system on biaxial tensile strength of a glass ionomer cement. Dent Mater. 2002;18(5):376–9.CrossRefGoogle Scholar
  41. 41.
    Romand M, Roubin M, Deloume J-P. X-ray photoelectron emission studies of mixed selenides AgGaSe2 and Ag9GaSe6. J Sol State Chem. 1978;25:159–64.CrossRefGoogle Scholar
  42. 42.
    Gray RC, Carver JC, Hercules DM. An ESCA study of organosilicon compounds. J Elec Spec Rel Phen. 1976;8:5343–57.CrossRefGoogle Scholar
  43. 43.
    Bahna P, Dvorak T, Hanna H, Yasko AW, Hachem R, Raad I. Orthopaedic metal devices coated with a novel antiseptic dye for the prevention of bacterial infection. Int J Anti Agents. 2007;29:593–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. W. Wren
    • 1
  • A. Coughlan
    • 1
  • L. Placek
    • 1
  • M. R. Towler
    • 1
  1. 1.Inamori School of EngineeringAlfred UniversityAlfredUSA

Personalised recommendations