Photocatalytic activity of low temperature oxidized Ti–6Al–4V

  • Erik Unosson
  • Cecilia Persson
  • Ken Welch
  • Håkan Engqvist
Article

Abstract

Numerous advanced surface modification techniques exist to improve bone integration and antibacterial properties of titanium based implants and prostheses. A simple and straightforward method of obtaining uniform and controlled TiO2 coatings of devices with complex shapes is H2O2-oxidation and hot water aging. Based on the photoactivated bactericidal properties of TiO2, this study was aimed at optimizing the treatment to achieve high photocatalytic activity. Ti–6Al–4V samples were H2O2-oxidized and hot water aged for up to 24 and 72 h, respectively. Degradation measurements of rhodamine B during UV-A illumination of samples showed a near linear relationship between photocatalytic activity and total treatment time, and a nanoporous coating was observed by scanning electron microscopy. Grazing incidence X-ray diffraction showed a gradual decrease in crystallinity of the surface layer, suggesting that the increase in surface area rather than anatase formation was responsible for the increase in photocatalytic activity.

Notes

Acknowledgments

This project is part of the ProViking program, funded by the Swedish Foundation for Strategic Research (SSF). EBM rods of Ti–6Al–4V were kindly provided by Arcam AB.

References

  1. 1.
    Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004;47(3–4):49–121.CrossRefGoogle Scholar
  2. 2.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials cp Ti, Ti–6Al–7Nb and Ti–6Al–4V with different pretreatments. J Mater Sci Mater Med. 1999;10(1):35–46.CrossRefGoogle Scholar
  3. 3.
    Oshida Y. Bioscience and bioengineering of titanium materials. Amsterdam: Elsevier; 2007.Google Scholar
  4. 4.
    Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25(6):1003–10.CrossRefGoogle Scholar
  5. 5.
    Cui XY, Kim HM, Kawashita M, Wang LB, Xiong TY, Kokubo T, et al. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions. J Mater Sci Mater Med. 2008;19(4):1767–73.CrossRefGoogle Scholar
  6. 6.
    Jimbo R, Sawase T, Baba K, Kurogi T, Shibata Y, Atsuta M. Enhanced initial cell responses to chemically modified anodized titanium. Clin Implant Dent Relat Res. 2008;10(1):55–61.CrossRefGoogle Scholar
  7. 7.
    Peltola T, Patsi M, Rahiala H, Kangasniemi I, Yli-Urpo A. Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res. 1998;41(3):504–10.CrossRefGoogle Scholar
  8. 8.
    Rupp F, Haupt M, Klostermann H, Kim HS, Eichler M, Peetsch A, et al. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications. Acta Biomater. 2010;6(12):4566–77.CrossRefGoogle Scholar
  9. 9.
    Suketa N, Sawase T, Kitaura H, Naito M, Baba K, Nakayama K, et al. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent Relat Res. 2005;7(2):105–11.CrossRefGoogle Scholar
  10. 10.
    Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayama K, et al. Antibacterial metal implant with a TiO 2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf Interface Anal. 2009;41(1):17–22.CrossRefGoogle Scholar
  11. 11.
    Casaletto MP, Ingo GM, Kaciulis S, Mattogno G, Pandolfi L, Scavia G. Surface studies of in vitro biocompatibility of titanium oxide coatings. Appl Surf Sci. 2001;172(1–2):167–77.CrossRefGoogle Scholar
  12. 12.
    Lindberg F, Heinrichs J, Ericson F, Thomsen P, Engqvist H. Hydroxylapatite growth on single-crystal rutile substrates. Biomaterials. 2008;29(23):3317–23.CrossRefGoogle Scholar
  13. 13.
    Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32(3):409–17.CrossRefGoogle Scholar
  14. 14.
    Wang XX, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials. 2002;23(5):1353–7.CrossRefGoogle Scholar
  15. 15.
    Takemoto S, Yamamoto T, Tsuru K, Hayakawa S, Osaka A, Takashima S. Platelet adhesion on titanium oxide gels: effect of surface oxidation. Biomaterials. 2004;25(17):3485–92.CrossRefGoogle Scholar
  16. 16.
    XF Yang, Chen Y, Yang F, He FM, Zhao SF. Enhanced initial adhesion of osteoblast-like cells on an anatase-structured titania surface formed by H2O2/HCl solution and heat treatment. Dent Mater. 2009;25(4):473–80.CrossRefGoogle Scholar
  17. 17.
    Karthega M, Nagarajan S, Rajendran N. In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta. 2010;55(6):2201–9.CrossRefGoogle Scholar
  18. 18.
    Ferraris S, Spriano S, Pan G, Venturello A, Bianchi CL, Chiesa R, et al. Surface modification of Ti–6Al–4V alloy for biomineralization and specific biological response: Part I, inorganic modification. J Mater Sci Mater Med. 2011;22(3):533–45.CrossRefGoogle Scholar
  19. 19.
    Wu J, Hayakawa S, Tsuru K, Osaka A. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc. 2004;87(9):1635–42.CrossRefGoogle Scholar
  20. 20.
    Wu J, Wang M, Li Y, Zhao F, Ding X, Osaka A. Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania. Surf Coat Technol. 2006;201(3–4):755–61.CrossRefGoogle Scholar
  21. 21.
    Sun T, Wang M. Low-temperature biomimetic formation of apatite/TiO2 composite coatings on Ti and NiTi shape memory alloy and their characterization. Appl Surf Sci. 2008;255(2):396–400.CrossRefGoogle Scholar
  22. 22.
    Sun T, Wang M. A comparative study on titania layers formed on Ti, Ti–6Al–4V and NiTi shape memory alloy through a low temperature oxidation process. Surf Coat Technol. 2010;205(1):92–101.CrossRefGoogle Scholar
  23. 23.
    Linsebigler A, Lu G. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95(3):735–58.CrossRefGoogle Scholar
  24. 24.
    Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 1. 2005;44(12):8269–85.CrossRefGoogle Scholar
  25. 25.
    Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol. 1998;32(5):726–8.CrossRefGoogle Scholar
  26. 26.
    Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63(12):515–82.CrossRefGoogle Scholar
  27. 27.
    Maness P, Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65(9):4094–8.Google Scholar
  28. 28.
    Welch K, Cai YL, Engqvist H, Stromme M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent Mater. 2010;26(5):491–9.CrossRefGoogle Scholar
  29. 29.
    Sunada K. Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol A Chem. 2003;156(1–3):227–33.CrossRefGoogle Scholar
  30. 30.
    Riley D, Bavastrello V, Covani U, Barone A, Nicolini C. An in vitro study of the sterilization of titanium dental implants using low intensity UV-radiation. Dent Mater. 2005;21(8):756–60.CrossRefGoogle Scholar
  31. 31.
    Panda AB, Laha P, Harish K, Sarkar B, Chaure S, Sayyad W, et al. Study of bactericidal efficiency of magnetron sputtered TiO2 films deposited at varying oxygen partial pressure. Surf Coat Technol. 2010;205(5):1611–7.CrossRefGoogle Scholar
  32. 32.
    Gallardo-Moreno AM, Pacha-Olivenza MA, Fernandez-Calderon MC, Perez-Giraldo C, Bruque JM, Gonzalez-Martin ML. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials. 2010;31(19):5159–68.CrossRefGoogle Scholar
  33. 33.
    Joo H-C, Lim Y-J, Kim M-J, Kwon H-B, Han J-H. Characterization on titanium surfaces and its effect on photocatalytic bactericidal activity. Appl Surf Sci. 2010;257(3):741–6.CrossRefGoogle Scholar
  34. 34.
    Norowski PA, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater. 2009;88B(2):530–43.CrossRefGoogle Scholar
  35. 35.
    Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009;72(2):104–10.CrossRefGoogle Scholar
  36. 36.
    Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA II. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C. 2008;28(3):366–73.CrossRefGoogle Scholar
  37. 37.
    Koike M, Martinez K, Guo L, Chahine G, Kovacevic R, Okabe T. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J Mater Process Technol. 2011;211(8):1400–8.CrossRefGoogle Scholar
  38. 38.
    Thomsen P, Malmstrom J, Emanuelsson L, Rene M, Snis A. Electron beam-melted, free-form-fabricated titanium alloy implants: material surface characterization and early bone response in rabbits. J Biomed Mater Res B Appl Biomater. 2009;90B(1):35–44.Google Scholar
  39. 39.
    Ponader S, von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Korner C, et al. In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J Biomed Mater Res A. 2010;92A(1):56–62.CrossRefGoogle Scholar
  40. 40.
    Matthews RW. Photooxidative degradation of colored organics in water using supported catalysts—TiO2 on sand. Water Res. 1991;25(10):1169–76.CrossRefGoogle Scholar
  41. 41.
    Wu J, Hayakawa S, Tsuru K, Osaka A. Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization. J Ceram Soc Jpn. 2002;110(2):78–80.CrossRefGoogle Scholar
  42. 42.
    Ding Z, Lu G, Greenfield P. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B. 2000;104(19):4815–20.CrossRefGoogle Scholar
  43. 43.
    Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26(14):1837–47.CrossRefGoogle Scholar
  44. 44.
    Tambasco de Oliveira P, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25(3):403–13.CrossRefGoogle Scholar
  45. 45.
    Fassier M, Peyratout CS, Smith DS, Ducroquetz C, Voland T. Photocatalytic activity of titanium dioxide coatings: influence of the firing temperature of the chemical gel. J Eur Ceram Soc. 2010;30(13):2757–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Erik Unosson
    • 1
  • Cecilia Persson
    • 1
  • Ken Welch
    • 2
  • Håkan Engqvist
    • 1
  1. 1.Division of Applied Materials Science, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations