Substituted hydroxyapatites for bone repair

  • Jennifer H. Shepherd
  • David V. Shepherd
  • Serena M. Best


Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.


Apatite Strontium Hydroxyapatite Strontium Ranelate Orthosilicic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92.CrossRefGoogle Scholar
  2. 2.
    Global Industry Analysts. Bone Grafts: a US Market Report. 2011. Accession 20 November 2011.Google Scholar
  3. 3.
    Registry NJ. NJR Stats online. 2010. Accession 20 November 2011.Google Scholar
  4. 4.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769.CrossRefGoogle Scholar
  5. 5.
    Sergey VD. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6:4457–75.CrossRefGoogle Scholar
  6. 6.
    Cai YR, Tang RK. Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem. 2008;18:3775.CrossRefGoogle Scholar
  7. 7.
    Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362.CrossRefGoogle Scholar
  8. 8.
    Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465.CrossRefGoogle Scholar
  9. 9.
    Sergey VD. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34.CrossRefGoogle Scholar
  10. 10.
    Grant AA, Duff EJ. Apatite ceramics for use in implantation. In: Hastings GW, Williams DF, editors. Mechanical properties of biomaterials. New York: Wiley; 1980.Google Scholar
  11. 11.
    Posner AS, Perloff A, Diorio AF. Refinement of the hydroxyapatite structure. Acta Crystallogr A. 1958;11:308.CrossRefGoogle Scholar
  12. 12.
    Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature. 1964;204:1050.CrossRefGoogle Scholar
  13. 13.
    Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996;17:537.CrossRefGoogle Scholar
  14. 14.
    Guo L, Huang M, Zhang X. Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method. J Mater Sci Mater Med. 2003;14:817.CrossRefGoogle Scholar
  15. 15.
    Rapacz-Kmita A, Paluszkiewicz C, Ślósarczyk A, Paszkiewicz Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J Mol Struct. 2005;744–747:653.CrossRefGoogle Scholar
  16. 16.
    Newesely H, Osborn JF. Structural and textural implication of calcium phosphate in ceramics. In: Hasting GW, Williams DF, editors. Mechanical properties of biomaterials. New York: Wiley; 1978.Google Scholar
  17. 17.
    Prakash KH, Kumar R, Ooi CP, Cheang P, Khor KA. Apparent Solubility of hydroxyapatite in aqueous medium and its influence on the morphology of nanocrystallites with precipitation temperature. Langmuir. 2006;22:11002.CrossRefGoogle Scholar
  18. 18.
    Royer A, Viguie JC, Heughebaert M, Heughebaert JC. Stoichiometry of hydroxyapatite: influence on the flexural strength. J Mater Sci Mater Med. 1993;4:76.CrossRefGoogle Scholar
  19. 19.
    Tagai H, Aoki H. Preparation of synthetic hydroxyapatite and sintering of apatite ceramics. In: Hastings GW, Williams DF, editors. Mechanical properties of biomaterials. New York: Wiley; 1978.Google Scholar
  20. 20.
    Best S, Bonfield W. Processing behaviour of hydroxyapatite powders with contrasting morphology. J Mater Sci Mater Med. 1994;5:516.CrossRefGoogle Scholar
  21. 21.
    Mostafa NY. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys. 2005;94:333.CrossRefGoogle Scholar
  22. 22.
    Albee FH, Morrison HF. Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920;71:32.CrossRefGoogle Scholar
  23. 23.
    Key JA. The effect of a local calcium depot on osteogenesis and healing of fractures. J Bone Joint Surg. 1934;16:176.Google Scholar
  24. 24.
    Murray CR. Delayed and non-union in fractures in the adult. Ann Surg. 1931;93:961.CrossRefGoogle Scholar
  25. 25.
    Ray RD, Degge J, Gloyd P, Mooney G. Bone regeneration: an experimental study of bone-grafting. J Bone Joint Surg. 1952;34:638.Google Scholar
  26. 26.
    Bagambisa FB, Joos U. Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials. 1990;11:50.CrossRefGoogle Scholar
  27. 27.
    Best S, Sim B, Kayser M, Downes S. The dependence of osteoblastic response on variations in the chemical composition and physical properties of hydroxyapatite. J Mater Sci Mater Med. 1997;8:97.CrossRefGoogle Scholar
  28. 28.
    Kim HM. Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci. 2003;7:289.CrossRefGoogle Scholar
  29. 29.
    Redey SA, Razzouk S, Rey C, Bernache-Assollant D, Leroy G, Nardin M, Cournot G. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res. 1999;45:140.CrossRefGoogle Scholar
  30. 30.
    Gomi K, Lowenberg B, Shapiro G, Davies JE. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials. 1993;14:91.CrossRefGoogle Scholar
  31. 31.
    Monchau F, Lefèvre A, Descamps M, Belquin-myrdycz A, Laffargue P, Hildebrand HF. In vitro studies of human and rat osteoclast activity on hydroxyapatite, β-tricalcium phosphate, calcium carbonate. Biomol Eng. 2002;19:143.CrossRefGoogle Scholar
  32. 32.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327.CrossRefGoogle Scholar
  33. 33.
    Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799.CrossRefGoogle Scholar
  34. 34.
    Annaz B, Hing KA, Kayser M, Buckland T, Silvio LD. Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J Microsc. 2004;215:100.CrossRefGoogle Scholar
  35. 35.
    Frame JW, Browne RM, Brady CL. Hydroxyapatite as a bone substitute in the jaws. Biomaterials. 1981;2:19.CrossRefGoogle Scholar
  36. 36.
    Sepulveda P, Bressiani AH, Bressiani JC, Meseguer L, König B Jr. In vivo evaluation of hydroxyapatite foams. J Biomed Mater Res. 2002;62:587.CrossRefGoogle Scholar
  37. 37.
    Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230.CrossRefGoogle Scholar
  38. 38.
    McCord JF. An investigation into the effects of dense hydroxyapatite on bone strength. Dent Mater. 1988;4:68.CrossRefGoogle Scholar
  39. 39.
    LeGeros RZ. Biological and synthetic apatites. In: Brown PW, Constantz B, editors. Hydroxyapatite and related compounds. San Francisco: CRC press; 1993. p. 3.Google Scholar
  40. 40.
    Legeros RZ. Calcium Phosphates in Oral Biology and Medicine. In: Myers H, editors. Monographs in Oral Science. Basel: Karger; 1991. Vol 15. p. IX + 201.Google Scholar
  41. 41.
    Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004;15:710.CrossRefGoogle Scholar
  42. 42.
    Percival M. Bone Health and Osteoporosis. Appl nutr sci rep. 1999;5:1.Google Scholar
  43. 43.
    Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS. The role of magnesium on the structure of biological apatites. Calcif Tissue Int. 1992;50:439.CrossRefGoogle Scholar
  44. 44.
    Bertoni E, Bigi A, Cojazzi G, Gandolfi M, Panzavolta S, Roveri N. Nanocrystals of magnesium and fluoride substituted hydroxyapatite. J Inorg Biochem. 1998;72:29.CrossRefGoogle Scholar
  45. 45.
    Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem. 1993;49:69.CrossRefGoogle Scholar
  46. 46.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med. 2008;19:239.CrossRefGoogle Scholar
  47. 47.
    Ren F, Leng Y, Xin R, Ge X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787.CrossRefGoogle Scholar
  48. 48.
    Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969.CrossRefGoogle Scholar
  49. 49.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004;25:4647.CrossRefGoogle Scholar
  50. 50.
    Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME. Magnesium incorporation into hydroxyapatite. Biomaterials. 2011;32:1826.CrossRefGoogle Scholar
  51. 51.
    Serre CM, Papillard M, Chavassieux P, Voegel JC, Boivin G. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res. 1998;42:626.CrossRefGoogle Scholar
  52. 52.
    Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs. Clin Oral Implant Res. 2011;22:512.CrossRefGoogle Scholar
  53. 53.
    de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES, de Sena LA, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res, Part A. 2011;98A:351.CrossRefGoogle Scholar
  54. 54.
    Hamilton-Miller JMT, Shah S. A microbiological assessment of silver fusidate, a novel topical antimicrobial agent. Int J Antimicrob Agents. 1996;7:97.CrossRefGoogle Scholar
  55. 55.
    Adams AP, Santschi EM, Mellencamp MA. Antibacterial properties of a silver chloride-coated nylon wound dressing. Vet Surg. 1999;28:219.CrossRefGoogle Scholar
  56. 56.
    Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent. 1997;25:373.CrossRefGoogle Scholar
  57. 57.
    George N, Faoagali J, Muller M. Silvazine (TM) (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns. 1997;23:493.CrossRefGoogle Scholar
  58. 58.
    Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GQ, Cui FZ. Antimicrobial effects of metal ions (Ag(+), Cu(2 +), Zn(2 +)) in hydroxyapatite. J Mater Sci Mater Med. 1998;9:129.CrossRefGoogle Scholar
  59. 59.
    Rameshbabu N, Kumar TSS, Prabhakar TG, Sastry VS, Murty K, Rao KP. Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res, Part A. 2007;80A:581.CrossRefGoogle Scholar
  60. 60.
    Chen Y, Zheng X, Xie Y, Ji H, Ding C, Li H, Dai K. Silver release from silver-containing hydroxyapatite coatings. Surf Coat Technol. 2010;205:1892.CrossRefGoogle Scholar
  61. 61.
    Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL. Antibacterial and osteogenic properties hydroxyapatite coatings produced using of silver-containing a sol gel process. J Biomed Mater Res, Part A. 2007;82A:899.CrossRefGoogle Scholar
  62. 62.
    Stanic V, Janackovic D, Dimitrijevic S, Tanaskovic SB, Mitric M, Pavlovic MS, Krstic A, Jovanovic D, Raicevic S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci. 2011;257:4510.CrossRefGoogle Scholar
  63. 63.
    Badrour L, Sadel A, Zahir M, Kimakh L, El Hajbi A. Synthesis and physical and chemical characterization of Ca10-xAgx(PO4)(6)(OH)(2-x)square(x) apatites. Ann Chim Sci Mat. 1998;23:61.CrossRefGoogle Scholar
  64. 64.
    Chen YM, Miao XG. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials. 2005;26:1205.CrossRefGoogle Scholar
  65. 65.
    Naddari T, Hamdi B, Savariault JM, El Feki H, Ben Salah A. Substitution mechanism of alkali metals for strontium in strontium hydroxyapatite. Mater Res Bull. 2003;38:221.CrossRefGoogle Scholar
  66. 66.
    Blake GM, Zivanovic MA, McEwan AJ, Ackery DM. SR-89 Therapy - Strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med. 1986;12:447.Google Scholar
  67. 67.
    Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121.CrossRefGoogle Scholar
  68. 68.
    Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone. 2008;42:1131.CrossRefGoogle Scholar
  69. 69.
    Reginster JY. Strontium ranelate in osteoporosis. Curr Pharm Design. 2002;8:1907.CrossRefGoogle Scholar
  70. 70.
    Peng SL, Zhou GQ, Luk KDK, Cheung KMC, Li ZY, Lam WM, Zhou ZJ, Lu WW. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 2009;23:165.CrossRefGoogle Scholar
  71. 71.
    Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: new insights into the associated signaling pathways. J Biol Chem. 2009;284:575.CrossRefGoogle Scholar
  72. 72.
    Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29:176.CrossRefGoogle Scholar
  73. 73.
    Guida A, Towler MR, Wall JG, Hill RG, Eramo S. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22:1401.CrossRefGoogle Scholar
  74. 74.
    Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY, Graham J, Ng KW, Prince R, Prins J, Wark J, Devogelaer JP, Kaufman JM, Raeman F, Ziekenhuis JP, Walravens M, Beck-Nielsen H, Charles P, Sorensen OH, Aquino JP, Benhamou C, Blotman F, Bonidan O, Bourgeois P, Dehais J, Fardellone P, Kahan A, Kuntz JL, Marcelli C, Prost A, Vellas B, Weryha G, Felsenberg D, Hensen J, Kruse HP, Schmidt W, Semler J, Stucki G, Phenekos C, De Chatel R, Adami S, Bianchi G, Brandi ML, Cucinotta D, Fiore C, Gennari C, Isaia G, Luisetto G, Passariello R, Passeri M, Rovetta G, Tessari L, Hoszowski K, Lorenc RS, Sawicki A, Diez A, Cannata JB, Curiel MD, Rapado A, Gijon J, Torrijos A, Padrino JM, Varela AR, Bonjour JP, Clements M, Doyle DV, Ryan P, Smith IG, Smith R. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459.CrossRefGoogle Scholar
  75. 75.
    Bigi A, Boanini E, Capuccini C, Gazzano M. Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta. 2007;360:1009.CrossRefGoogle Scholar
  76. 76.
    O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG. Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 2008;4:1455.CrossRefGoogle Scholar
  77. 77.
    Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone. 1997;20:47.CrossRefGoogle Scholar
  78. 78.
    Boanini E, Torricelli P, Fini M, Bigi A. Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci Mater Med. 2011;22:2079.CrossRefGoogle Scholar
  79. 79.
    Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K. Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. J Eur Ceram Soc. 2006;26:509.CrossRefGoogle Scholar
  80. 80.
    Bigi A, Falini G, Gazzano M, Roveri N, Tedesco E. Structural refinements of strontium substituted hydroxylapatites. Mater Sci Forum. 1998;278(2):814.CrossRefGoogle Scholar
  81. 81.
    Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KDK, Lu WW. Solubility of strontium-substituted apatite by solid titration. Acta Biomater. 2009;5:1678.CrossRefGoogle Scholar
  82. 82.
    Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, Huang W. Effects of strontium in modified biomaterials. Acta Biomater. 2011;7:800.CrossRefGoogle Scholar
  83. 83.
    Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorrine W, De Broe ME, D’Haese PC. Effects of strontium on the physicochemical characteristics of hydroxyrapatite. Calcif Tissue Int. 2004;75:405.CrossRefGoogle Scholar
  84. 84.
    Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961.CrossRefGoogle Scholar
  85. 85.
    Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, Li ZY, Lam WM, Lu SB, Luk KDK. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials. 2006;27:4348.CrossRefGoogle Scholar
  86. 86.
    Ni GX, Yao ZP, Huang GT, Liu WG, Lu WW. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J Mater Sci Mater Med. 2011;22:961.CrossRefGoogle Scholar
  87. 87.
    Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater. 2008;4:1885.CrossRefGoogle Scholar
  88. 88.
    Kishi S, Yamaguchi M. Inhibitory effect of zinc-compounds on osteoclast-like cell-formation in mouse marrow cultures. Biochem Pharmacol. 1994;48:1225.CrossRefGoogle Scholar
  89. 89.
    Moonga BS, Dempster DW. Zinc is a potent inhibitor of osteoclastic bone-resorption in vitro. J Bone Miner Res. 1995;10:453.CrossRefGoogle Scholar
  90. 90.
    Yamaguchi M, Uchiyama S. Receptor activator of NF-kB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med. 2004;14:81.Google Scholar
  91. 91.
    Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 2008;312:157.CrossRefGoogle Scholar
  92. 92.
    Khadeer MA, Sahu SN, Bai G, Abdulla S, Gupta A. Expression of the zinc transporter ZIP1 in osteoclasts. Bone. 2005;37:296.CrossRefGoogle Scholar
  93. 93.
    Yamaguchi M, Yamaguchi R. Action of zinc on bone metabolism in rats - increases in alkaline-phosphatase activity and DNA content. Biochem Pharmacol. 1986;35:773.CrossRefGoogle Scholar
  94. 94.
    Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone-formation in tissue-culture. Biochem Pharmacol. 1987;36:4007.CrossRefGoogle Scholar
  95. 95.
    Ergun C, Webster TJ, Bizios R, Doremus RH. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res. 2002;59:305.CrossRefGoogle Scholar
  96. 96.
    Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25:2111.CrossRefGoogle Scholar
  97. 97.
    Sogo Y, Ito A, Fukasawa K, Sakurai T, Ichinose N. Zinc containing hydroxyapatite ceramics to promote osteoblastic cell activity. Mater Sci Technol. 2004;20:1079.CrossRefGoogle Scholar
  98. 98.
    Miyaji F, Kono Y, Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull. 2005;40:209.CrossRefGoogle Scholar
  99. 99.
    Grandjean-Laquerrier A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Phillips TM. Influence of the zinc concentration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials. 2006;27:3195.CrossRefGoogle Scholar
  100. 100.
    Chung RJ, Hsieh MF, Huang CW, Perng LH, Wen HW, Chin TS. Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res, Part B. 2006;76B:169.CrossRefGoogle Scholar
  101. 101.
    Velard F, Laurent-Maquin D, Braux J, Guillaume C, Bouthors S, Jallot E, Nedelec JM, Belaaouaj A, Laquerriere P. The effect of zinc on hydroxyapatite-mediated activation of human polymorphonuclear neutrophils and bone implant-associated acute inflammation. Biomaterials. 2010;31:2001.CrossRefGoogle Scholar
  102. 102.
    Ma X, Ellis DE. Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. Biomaterials. 2008;29:257.CrossRefGoogle Scholar
  103. 103.
    Matos M, Terra J, Ellis DE. Mechanism of Zn stabilization in hydroxyapatite and hydrated (001) surfaces of hydroxyapatite. J Phys: Condes Matter. 2010;22:7.CrossRefGoogle Scholar
  104. 104.
    Terra J, Jiang M, Ellis DE. Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop. 2002;82:2357.Google Scholar
  105. 105.
    Tang YZ, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30:2864.CrossRefGoogle Scholar
  106. 106.
    Matsunaga K. First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J Chem Phys. 2008;128:245101.CrossRefGoogle Scholar
  107. 107.
    Yin X, Calderin L, Stott MJ, Sayer M. Density functional study of structural, electronic and vibrational properties of Mg- and Zn-doped tricalcium phosphate biomaterials. Biomaterials. 2002;23:4155.CrossRefGoogle Scholar
  108. 108.
    Ren FZ, Xin RL, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5:3141.CrossRefGoogle Scholar
  109. 109.
    Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med. 2008;19:797.CrossRefGoogle Scholar
  110. 110.
    Ito A, Ojima K, Naito H, Ichinose N, Tateishi T. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res. 2000;50:178.CrossRefGoogle Scholar
  111. 111.
    Yamada Y, Ito A, Kojima H, Sakane M, Miyakawa S, Uemura T, LeGeros RZ. Inhibitory effect of Zn2 + in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res, Part A. 2008;84A:344.CrossRefGoogle Scholar
  112. 112.
    Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50:184.CrossRefGoogle Scholar
  113. 113.
    Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256:6083.CrossRefGoogle Scholar
  114. 114.
    Montel G, Bonel G, Heughebaert JC, Trombe JC, Rey C. New concepts in the composition, crystallization and growth of the mineral component of calcified tissues. J Cryst Growth. 1981;53:74.CrossRefGoogle Scholar
  115. 115.
    Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Suarez KN, Moro L. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem. 1997;68:45.CrossRefGoogle Scholar
  116. 116.
    Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931.CrossRefGoogle Scholar
  117. 117.
    Legeros RZ. Apatites in biological systems. Prog Cryst Growth Charact Mater. 1981;4:1.CrossRefGoogle Scholar
  118. 118.
    Chiranjeevirao SV, Voegel JC, Frank RM. A method of preparation and characterization of carbonato-apatites. Inorg Chim Acta. 1983;78:43.CrossRefGoogle Scholar
  119. 119.
    Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998;41:79.CrossRefGoogle Scholar
  120. 120.
    Liao S, Watari F, Xu G, Ngiam M, Ramakrishna S, Chan CK. Morphological effects of variant carbonates in biomimetic hydroxyapatite. Mater Lett. 2007;61:3624.CrossRefGoogle Scholar
  121. 121.
    Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci Mater Med. 2002;13:529.CrossRefGoogle Scholar
  122. 122.
    Merry JC, Gibson IR, Best SM, Bonfield W. Synthesis and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med. 1998;9:779.CrossRefGoogle Scholar
  123. 123.
    Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T. Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res. 1997;36:522.CrossRefGoogle Scholar
  124. 124.
    Nordström EG, Karlsson KH. Carbonate-doped hydroxyapatite. J Mater Sci Mater Med. 1990;1:182.CrossRefGoogle Scholar
  125. 125.
    Vignoles M, Bonel G, Holcomb D, Young R. Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif Tissue Int. 1988;43:33.CrossRefGoogle Scholar
  126. 126.
    Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res. 1998;39:603.CrossRefGoogle Scholar
  127. 127.
    Driessens FCM, Verbeeck RMH, Heijligers HJM. Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorg Chim Acta. 1983;80:19.CrossRefGoogle Scholar
  128. 128.
    Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697.CrossRefGoogle Scholar
  129. 129.
    Murugan R, Ramakrishna S. Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater. 2006;2:201.CrossRefGoogle Scholar
  130. 130.
    Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. J Mater Sci Mater Med. 2005;16:899.CrossRefGoogle Scholar
  131. 131.
    LeGeros RZ, Trautz OR, LeGeros RZ, Klein L, Shirra WP. Apatite crystallites: effect of carbonate on morphology. Science. 1967;155:1409.CrossRefGoogle Scholar
  132. 132.
    Spence G, Patel N, Brooks R, Rushton N. Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response. J Biomed Mater Res, Part A. 2009;90A:217.CrossRefGoogle Scholar
  133. 133.
    Mertz W. The essential trace-elements. Science. 1981;213:1332.CrossRefGoogle Scholar
  134. 134.
    Moller PF, Gudjonsson SV. Massive fluorosis of bones and ligaments. Acta Radiol. 1932;13:269.CrossRefGoogle Scholar
  135. 135.
    Roholm K. Fluorine intoxication: a clinical-hygienic study. London: H.K. Lewis; 1937.Google Scholar
  136. 136.
    Rich C, Ivanovics P, Ensinck J. Effects of sodium fluoride on calcium metabolism of subjects with metabolic bone diseases. J Clin Invest. 1964;43:545.CrossRefGoogle Scholar
  137. 137.
    Cass RM, Croft JD, Perkins P, Nye W, Waterhou C, Terry R. New bone formation in osteoporosis following treatment with sodium fluoride. Arch Intern Med. 1966;118:111.CrossRefGoogle Scholar
  138. 138.
    Farley SMG, Wergedal JE, Smith LC, Lundy MW, Farley JR, Baylink DJ. Fluoride therapy for osteoporosis: characterization of the skeletal response by serial measurements of serum alkaline-phosphatase activity. Metab, Clin Exp. 1987;36:211.CrossRefGoogle Scholar
  139. 139.
    Briancon D, Meunier PJ. Treatment of osteoporosis with fluoride, calcium, and vitamin-D. Orthop Clin North Am. 1981;12:629.Google Scholar
  140. 140.
    Riggs BL, Hodgson SF, Hoffman DL, Kelly PJ, Johnson KA, Taves D. Treatment of primary osteoporosis with fluoride and calcium: clinical tolerance and fracture occurrence. J Am Med Assoc. 1980;243:446.CrossRefGoogle Scholar
  141. 141.
    Boivin G, Chapuy MC, Baud CA, Meunier PJ. Fluoride content in human iliac bone: results in controls, patients with fluorosis, and osteoporotic patients treated with fluoride. J Bone Miner Res. 1988;3:497.CrossRefGoogle Scholar
  142. 142.
    Guanabens N, Farrerons J, Perez-Edo L, Monegal A, Renau A, Carbonell J, Roca M, Torra M, Pavesi M. Cyclical etidronate versus sodium fluoride in established postmenopausal osteoporosis: a randomized 3 year trial. Bone. 2000;27:123.CrossRefGoogle Scholar
  143. 143.
    Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline-phosphatase activity of bone-forming cells. Science. 1983;222:330.CrossRefGoogle Scholar
  144. 144.
    Chavassieux P, Boivin G, Serre CM, Meunier PJ. Fluoride increases rat osteoblast function and population after in vivo administration but not after in vitro exposure. Bone. 1993;14:721.CrossRefGoogle Scholar
  145. 145.
    Wei M, Evans JH, Bostrom T, Grondahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311.CrossRefGoogle Scholar
  146. 146.
    Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36:313.CrossRefGoogle Scholar
  147. 147.
    Jha LJ, Best SM, Knowles JC, Rehman I, Santos JD, Bonfield W. Preparation and characterization of fluoride-substituted apatites. J Mater Sci Mater Med. 1997;8:185.CrossRefGoogle Scholar
  148. 148.
    Cavalli M, Gnappi G, Montenero A, Bersani D, Lottici PP, Kaciulis S, Mattogno G, Fini M. Hydroxy- and fluorapatite films on Ti alloy substrates: sol-gel preparation and characterization. J Mater Sci. 2001;36:3253.CrossRefGoogle Scholar
  149. 149.
    Moreno EC, Kresak M, Zahradni Rt. Fluoridated hydroxyapatite solubility and caries formation. Nature. 1974;247:64.CrossRefGoogle Scholar
  150. 150.
    Rodriguez-Lorenzo LM, Hart JN, Gross KA. Structural and chemical analysis of well-crystallized hydroxyfluorapatites. J Phys Chem B. 2003;107:8316.CrossRefGoogle Scholar
  151. 151.
    Kannan S, Rebelo A, Ferreira JMF. Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites. J Inorg Biochem. 2006;100:1692.CrossRefGoogle Scholar
  152. 152.
    Eslami H, Solati-Hashjin M, Tahriri M. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C-Biomimetic Supramol Syst. 2009;29:1387.CrossRefGoogle Scholar
  153. 153.
    Legeros RZ, Kijkowska R, Jia W, Legeros JP. Fluoride-cation interactions in the formation and stability of apatites. J Fluor Chem. 1988;41:53.CrossRefGoogle Scholar
  154. 154.
    Bhadang KA, Gross KA. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials. 2004;25:4935.CrossRefGoogle Scholar
  155. 155.
    Cheng K, Weng WJ, Wang HM, Zhang S. In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials. 2005;26:6288.CrossRefGoogle Scholar
  156. 156.
    Rodriguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials. 2003;24:3777.CrossRefGoogle Scholar
  157. 157.
    Montanaro L, Arciola CR, Campoccia D, Cervellati M. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys. Biomaterials. 2002;23:3651.CrossRefGoogle Scholar
  158. 158.
    Kim H-W, Kim H-E, Knowles JC. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials. 2004;25:3351.CrossRefGoogle Scholar
  159. 159.
    Wang YS, Zhang S, Zeng XT, Ma LL, Khor KA, Qian M. Initial attachment of osteoblastic cells onto sol-gel derived fluoridated hydroxyapatite coatings. J Biomed Mater Res, Part A. 2008;84A:769.CrossRefGoogle Scholar
  160. 160.
    Ge X, Leng Y, Bao CY, Xu SL, Wang RK, Ren FZ. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res, Part A. 2010;95A:588.CrossRefGoogle Scholar
  161. 161.
    Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279.CrossRefGoogle Scholar
  162. 162.
    Carlisle EM. Silicon: an essential element for chick. Science. 1972;178:619.CrossRefGoogle Scholar
  163. 163.
    Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W. Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. In: Barbosa MA, Monteiro FJ, Correia R, Leon B, editors. 16th International Symposium on Ceramics in Medicine. Porto: Trans Tech Publications Ltd; 2003. p. 869.Google Scholar
  164. 164.
    Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127.CrossRefGoogle Scholar
  165. 165.
    Jugdaohsingh R, Calomme MR, Robinson K, Nielsen F, Anderson SHC, D’Haese P, Geusens P, Loveridge N, Thompson RPH, Powell JJ. Increased longitudinal growth in rats on a silicon-depleted diet. Bone. 2008;43:596.CrossRefGoogle Scholar
  166. 166.
    Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422.CrossRefGoogle Scholar
  167. 167.
    Tanizawa Y, Suzuki T. X-ray photoelectron spectroscopy study of silicate-containing apatite. Phosphorous Res Bull. 1994;4:83.Google Scholar
  168. 168.
    Sugiyama K, Suzuki T, Satoh T. Bactericidal activity of silicate-containing apatite. J Antibact Antifung Agents. 1995;23:67.Google Scholar
  169. 169.
    Leventouri T, Bunaciu CE, Perdikatsis V. Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials. 2003;24:4205.CrossRefGoogle Scholar
  170. 170.
    Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD. Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci: Mater Med. 2002;13:1123.CrossRefGoogle Scholar
  171. 171.
    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609.CrossRefGoogle Scholar
  172. 172.
    Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res, Part A. 2004;69A:670.CrossRefGoogle Scholar
  173. 173.
    Tang Q, Brooks R, Rushton N, Best S. Production and characterization of HA and SiHA coatings. J Mater Sci: Mater Med. 2010;21:173.CrossRefGoogle Scholar
  174. 174.
    San Thian E, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Bonfield W, Best SM. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials. 2008;29:1833.CrossRefGoogle Scholar
  175. 175.
    Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27:5014.CrossRefGoogle Scholar
  176. 176.
    Landi E, Uggeri J, Sprio S, Tampieri A, Guizzardi S. Human osteoblast behavior on as-synthesized SiO(4) and B-CO(3) co-substituted apatite. J Biomed Mater Res, Part A. 2010;94A:59.CrossRefGoogle Scholar
  177. 177.
    Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C-Biomimetic Supramol Syst. 2008;28:179.CrossRefGoogle Scholar
  178. 178.
    Landi E, Sprio S, Sandri M, Celotti G, Tampieri A. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 2008;4:656.CrossRefGoogle Scholar
  179. 179.
    Stephen JA, Skakle JMS, Gibson IR. Synthesis of novel high silicate-substituted hydroxyapatite by co-substitution mechanisms. Bioceramics. 2007;vol 19, Pts 1 and 2, vol. 330–332. p. 87.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jennifer H. Shepherd
    • 1
  • David V. Shepherd
    • 1
  • Serena M. Best
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations