Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review

  • Jasmin Hum
  • Aldo R. BoccacciniEmail author


Bioactive glasses (BG) show great promise for bone tissue engineering based on their key properties, e.g., biocompatibility, biodegradability, osteoconductivity as well as osteogenic and angiogenic potential, which make them excellent candidates for bone tissue scaffolds and bone substitute materials. Recent work has shown that dissolution products of bioactive glasses have the potential to induce angiogenesis in addition to their known effect of influencing gene expression and promoting osteoblastic differentiation. One of the most interesting features of BG is their ability to bond both to soft and hard tissues, depending on their composition. To intensify the positive impact of BG for medical applications, there are considerable research efforts on using bioactive glass based platforms as carriers for the encapsulation, delivery and controlled release of bioactive molecules and therapeutic drugs. Different types of bioactive glasses have been considered in combination with different therapeutic drugs, hormones, growth factors and peptides. Using bioactive glasses as drug delivery system combines thus the effectiveness of therapeutic drugs (or bioactive/signaling molecules) with the intrinsic advantages of this inorganic biomaterial. Considering research carried out in the last 15 years, this review presents the different chemical compositions and morphologies of bioactive glasses used as carrier for bioactive molecules and therapeutic drugs and discusses the expanding potential of BG with drug delivery capability focusing in the field of bone tissue engineering.


Drug Release Simulated Body Fluid Teicoplanin Bioactive Glass Bone Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the institution of mechanical engineers. Part H J Eng Med. 2010;224(12):1329–43.Google Scholar
  2. 2.
    Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans Ser A Math Phys Eng Sci. 2004;362(1825):2821–50.CrossRefGoogle Scholar
  3. 3.
    Oh S, Oh N, Appleford M, Ong JL. Bioceramics for tissue engineering applications—a review. Am J Biochem Biotechnol. 2006;2(2):49–56.CrossRefGoogle Scholar
  4. 4.
    Kellomäki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Törmälä P. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials. 2000;21(24):2495–505.CrossRefGoogle Scholar
  5. 5.
    O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev. 2011;17(6):389–92.CrossRefGoogle Scholar
  6. 6.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.CrossRefGoogle Scholar
  7. 7.
    Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.CrossRefGoogle Scholar
  8. 8.
    Puleo DA, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20(23–24):2311–21.CrossRefGoogle Scholar
  9. 9.
    Vallet-Regí M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;2003(6):1029–42.CrossRefGoogle Scholar
  10. 10.
    Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.CrossRefGoogle Scholar
  11. 11.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.CrossRefGoogle Scholar
  12. 12.
    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74.CrossRefGoogle Scholar
  13. 13.
    Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ. Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids. 2008;354(15–16):1690–6.CrossRefGoogle Scholar
  14. 14.
    Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater. 2009;5(9):3536–47.CrossRefGoogle Scholar
  15. 15.
    Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C. 2009;29(7):2275–81.CrossRefGoogle Scholar
  16. 16.
    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25(27):5857–66.CrossRefGoogle Scholar
  17. 17.
    Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5–6):768–77.CrossRefGoogle Scholar
  18. 18.
    Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2009;16(2):199–207.CrossRefGoogle Scholar
  19. 19.
    Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A. 2009;15(4):877–85.CrossRefGoogle Scholar
  20. 20.
    San Miguel B, Kriauciunas R, Tosatti S, Ehrbar M, Ghayor C, Textor M, Weber FE. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J Biomed Mater Res Part A. 2010;94A(4):1023–33.Google Scholar
  21. 21.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276(2):461–5.CrossRefGoogle Scholar
  22. 22.
    Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.CrossRefGoogle Scholar
  23. 23.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151–7.CrossRefGoogle Scholar
  24. 24.
    Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res Part A. 2010;93A(2):475–83.Google Scholar
  25. 25.
    Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001;22(12):1683–7.CrossRefGoogle Scholar
  26. 26.
    Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.CrossRefGoogle Scholar
  27. 27.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S. Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res. 2000;51(1):37–46.CrossRefGoogle Scholar
  28. 28.
    Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2(4):231–9.CrossRefGoogle Scholar
  29. 29.
    Li N, Jie Q, Zhu S, Wang R. Preparation and characterization of macroporous sol–gel bioglass. Ceram Int. 2005;31(5):641–6.CrossRefGoogle Scholar
  30. 30.
    Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G. Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett. 2006;60(29–30):3752–7.CrossRefGoogle Scholar
  31. 31.
    Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Roy Soc. 2010;7(43):209–27.Google Scholar
  32. 32.
    Monsigny M, Roche A-C, Midoux P, Mayer R. Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv Drug Deliv Rev. 1994;14(1):1–24.CrossRefGoogle Scholar
  33. 33.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.CrossRefGoogle Scholar
  34. 34.
    Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6(8):2874–88.CrossRefGoogle Scholar
  35. 35.
    Tölli H, Kujala S, Levonen K, Jämsä T, Jalovaara P. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. J Mater Sci Mater Med. 2010;21(5):1677–84.CrossRefGoogle Scholar
  36. 36.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.CrossRefGoogle Scholar
  37. 37.
    Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):187–206.CrossRefGoogle Scholar
  38. 38.
    Wang M. Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol. 2006;2:80–84.Google Scholar
  39. 39.
    Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Controlled Release. 2006;110(3):522–30.CrossRefGoogle Scholar
  40. 40.
    Colilla M, Izquierdo-Barba I, Vallet-Regí M. Novel biomaterials for drug delivery. Expert Opin Ther Pat. 2008;18(6):639–56.CrossRefGoogle Scholar
  41. 41.
    Balas F, Manzano M, Horcajada P, Vallet-Regí M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc. 2006;128(25):8116–7.CrossRefGoogle Scholar
  42. 42.
    Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.CrossRefGoogle Scholar
  43. 43.
    Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M. MCM-41 organic modification as drug delivery rate regulator. Chem Mater. 2003;15(2):500–3.CrossRefGoogle Scholar
  44. 44.
    Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.CrossRefGoogle Scholar
  45. 45.
    Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, Yamazaki A, Satoh T. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29(3):350–8.CrossRefGoogle Scholar
  46. 46.
    Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479–83.CrossRefGoogle Scholar
  47. 47.
    Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359–69.CrossRefGoogle Scholar
  48. 48.
    Goodson JM, Cugini MA, Kent RL, Armitage GC, Cobb CM, Fine D, Fritz ME, Green E, Imoberdorf MJ, Killoy WJ, Mendieta C, Niederman R, Offenbacher S, Taggart EJ, Tonetti M. Multicenter evaluation of tetracycline fiber therapy: II. Clinical response. J Periodontal Res. 1991;26(4):371–9.CrossRefGoogle Scholar
  49. 49.
    Vanderkerckhove BNA, Quirynen M, Van Steenberghe D. The use of tetracycline-containing controlled-release fibers in the treatment of refractory periodontitis. J Periodontol. 1997;68(4):353–61.CrossRefGoogle Scholar
  50. 50.
    Domingues ZR, Cortés ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25(2):327–33.CrossRefGoogle Scholar
  51. 51.
    Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86(2):147–62.CrossRefGoogle Scholar
  52. 52.
    Arun R, Ashok KCK, Sravanthi VVNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76:567–98.Google Scholar
  53. 53.
    Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Syst. 1987;3(1):1–40.Google Scholar
  54. 54.
    Domingues RZ, Clark AE, Brennan AB. A sol–gel derived bioactive fibrous mesh. J Biomed Mater Res. 2001;55(4):468–74.CrossRefGoogle Scholar
  55. 55.
    Andrade AL, Souza DM, Vasconcellos WA, Ferreira RV, Domingues RZ. Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds. J Non-Cryst Solids. 2009;355(13):811–6.CrossRefGoogle Scholar
  56. 56.
    Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta. 2004;1663:61–73.CrossRefGoogle Scholar
  57. 57.
    Xie Z, Liu X, Jia W, Zhang C, Huang W, Wang J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Controlled Release. 2009;139(2):118–26.CrossRefGoogle Scholar
  58. 58.
    Day DE, White JE, Brown RF, McMenamin KD. Transformation of borate glasses into biologically useful materials. Glass Technol. 2003;44(2):75–81.Google Scholar
  59. 59.
    Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc. 2007;90(1):303–6.CrossRefGoogle Scholar
  60. 60.
    Nielsen FH. The emergence of boron as nutritionally important throughout the life cycle. Nutrition. 2000;16(7–8):512–4.CrossRefGoogle Scholar
  61. 61.
    Soundrapandian C, Basu D, Sa B, Datta S. Local drug delivery system for the treatment of osteomyelitis: in vitro evaluation. Drug Dev Ind Pharm. 2010;37(5):538–46.CrossRefGoogle Scholar
  62. 62.
    Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J Roy Soc. 2011;8(55):153–70.Google Scholar
  63. 63.
    Takita H, Vehof JW, Jansen JA, Yamamoto M, Tabata Y, Tamura M, Kuboki Y. Carrier dependent cell differentiation of bone morphogenetic protein-2 induced osteogenesis and chondrogenesis during the early implantation stage in rats. J Biomed Mater Res A. 2004;71(1):181–9.CrossRefGoogle Scholar
  64. 64.
    Välimäki W, Yrjans JJ, Vuorio E, Aro HT. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A. 2005;75(3):501–9.Google Scholar
  65. 65.
    Bergeron E, Marquis ME, Chrétien I, Faucheux N. Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J Mater Sci Mater Med. 2007;18(2):255–63.CrossRefGoogle Scholar
  66. 66.
    Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41.CrossRefGoogle Scholar
  67. 67.
    Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007;362(3):550–3.CrossRefGoogle Scholar
  68. 68.
    Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85-A(8):1544–52.Google Scholar
  69. 69.
    Pekkarinen T, Lindholm TS, Hietala O, Jalovaara P. New bone formation induced by injection of native reindeer bone morphogenetic protein extract. Scand J Surg. 2003;92:227–30.Google Scholar
  70. 70.
    Seeherman HJ, Bouxsein M, Kim H, Li R, Li XJ, Aiolova M, Wozney JM. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate mode. J Bone Joint Surg Am. 2004;86-A(9):1961–72.Google Scholar
  71. 71.
    Agrawal CM, Best J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials. 1995;16(16):1255–60.CrossRefGoogle Scholar
  72. 72.
    Athanasiou KA, Singhal AR, Agrawal CM, Boyan BD. In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin Orthop Relat Res. 1995;315:272–81.Google Scholar
  73. 73.
    Santos EM, Radin S, Ducheyne P. Sol–gel derived carrier for the controlled release of proteins. Biomaterials. 1999;20(19):1695–700.CrossRefGoogle Scholar
  74. 74.
    Chen QZ, Ahmed I, Knowles JC, Nazhat SN, Boccaccini AR, Rezwan K. Collagen release kinetics of surface functionalized 45S5 Bioglass-based porous scaffolds. J Biomed Mater Res A. 2008;86(4):987–95.Google Scholar
  75. 75.
    Heule M, Rezwan K, Cavalli L, Gauckler LJ. A miniaturized enzyme reactor based on hierarchically shaped porous ceramic microstruts. Adv Mater. 2003;15(14):1191–4.CrossRefGoogle Scholar
  76. 76.
    Williams RA, Blanch HW. Covalent immobilization of protein monolayers for biosensor applications. Biosens Bioelectron. 1994;9(2):159–67.CrossRefGoogle Scholar
  77. 77.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefGoogle Scholar
  78. 78.
    Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte Chemie Internationale Edition. 2004;43(44):5980–4.CrossRefGoogle Scholar
  79. 79.
    Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials. 2009;30(12):2199–208.CrossRefGoogle Scholar
  80. 80.
    Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y. A comparative study of mesoporous-glass/silk and non-mesoporous-glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater. 2011;7(5):2229–36.CrossRefGoogle Scholar
  81. 81.
    Horcajada P, Rámila A, Boulahya K, González-Calbet J, Vallet-Regí M. Bioactivity in ordered mesoporous materials. Solid State Sci. 2004;6(11):1295–300.CrossRefGoogle Scholar
  82. 82.
    López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Valllet-Regí M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18(13):3137–44.CrossRefGoogle Scholar
  83. 83.
    Sun J, Li Y, Li L, Zhao W, Li L, Gao J, Ruan M, Shi J. Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J Non-Cryst Solids. 2008;354(32):3799–805.CrossRefGoogle Scholar
  84. 84.
    Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Controlled Release. 2004;98(2):209–17.CrossRefGoogle Scholar
  85. 85.
    Sampath SS, Robinson DH. Comparison of new and existing spectrophotometric methods for the analysis of tobramycin and other aminoglycosides. J Pharm Sci. 1990;79(5):428–31.CrossRefGoogle Scholar
  86. 86.
    Zhang X, Wyss UP, Pichora D, Goosen MFA. A mechanistic study of antibiotic release from biodegradable poly(d,l-lactide) cylinders. J Controlled Release. 1994;31(2):129–44.CrossRefGoogle Scholar
  87. 87.
    Kim H-W, Kim H-E, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16(12):1529–35.CrossRefGoogle Scholar
  88. 88.
    Xia W, Zhang D, Chang J. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology. 2007;18(13):135601.CrossRefGoogle Scholar
  89. 89.
    Hong Y, Chen X, Jing X, Fan H, Gu Z, Zhang X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv Funct Mater. 2010;20(9):1503–10.CrossRefGoogle Scholar
  90. 90.
    Zhao YF, Loo SCJ, Chen YZ, Boey FYC, Ma J. In situ SAXRD study of sol–gel induced well-ordered mesoporous bioglasses for drug delivery. J Biomed Mater Res Part A. 2007;85A(4):1032–42.CrossRefGoogle Scholar
  91. 91.
    Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of a CaO-P(2)O(5)-SiO(2) system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res. 2000;52(4):601–12.CrossRefGoogle Scholar
  92. 92.
    Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–78.CrossRefGoogle Scholar
  93. 93.
    Wu C, Zhang Y, Zhu Y, Friis T, Xiao Y. Structure–property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31(13):3429–38.CrossRefGoogle Scholar
  94. 94.
    Beresford JN, Joyner CJ, Devlin C, Triffitt JT. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol. 1994;39(11):941–7.CrossRefGoogle Scholar
  95. 95.
    Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7(4):1797–806.CrossRefGoogle Scholar
  96. 96.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GS. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–52.CrossRefGoogle Scholar
  97. 97.
    Barrias CC, Ribeiro CC, Lamghari M, Miranda CS, Barbosa MA. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res Part A. 2005;72A(1):57–66.CrossRefGoogle Scholar
  98. 98.
    Kang S-W, Yang HS, Seo S-W, Han DK, Kim B-S. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J Biomed Mater Res Part A. 2008;85A(3):747–56.CrossRefGoogle Scholar
  99. 99.
    Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R, Xiao Y. Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res Part A. 2010;95A(2):476–85.CrossRefGoogle Scholar
  100. 100.
    Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2008;112(1–3):494–503.CrossRefGoogle Scholar
  101. 101.
    He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209–15.CrossRefGoogle Scholar
  102. 102.
    Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57(3):327–35.CrossRefGoogle Scholar
  103. 103.
    Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J Roy Soc. 2010;7(4):379–91.Google Scholar
  104. 104.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–73.CrossRefGoogle Scholar
  105. 105.
    Yu X, Cai S, Zhang Z, Guohua X. Bioactive pyrophosphate glass/beta-tricalcium phosphate composite with high mechanical properties. Mater Sci Eng C. 2008;28(7):1138–43.CrossRefGoogle Scholar
  106. 106.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.CrossRefGoogle Scholar
  107. 107.
    Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Comp Sci Technol. 2010;70(13):1764–76.CrossRefGoogle Scholar
  108. 108.
    Li X, Shi J, Dong X, Zhang L, Zeng H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res Part A. 2008;84(1):84–91.Google Scholar
  109. 109.
    Wei J, Chen F, Shin J-W, Hong H, Dai C, Su J, Liu C. Preparation and characterization of bioactive mesoporous wollastonite—polycaprolactone composite scaffold. Biomaterials. 2009;30(6):1080–8.CrossRefGoogle Scholar
  110. 110.
    Prabaharan M. Chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23(1):5–36.CrossRefGoogle Scholar
  111. 111.
    Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, Cho C-S. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.CrossRefGoogle Scholar
  112. 112.
    Cevher E, Orhan Z, Mülazimoğlu L, Sensoy D, Alper M, Yildiz A, Ozsoy Y. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm. 2006;317(2):127–35.CrossRefGoogle Scholar
  113. 113.
    Phaechamud T, Charoenteeraboon J. Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS PharmSciTech. 2008;9(3):829–35.CrossRefGoogle Scholar
  114. 114.
    Jia W-T, Zhang X, Luo S-H, Liu X, Huang W-H, Rahaman MN, Day DE, Zhang C-Q, Xie Z-P, Wang J-Q. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 2010;6(3):812–9.CrossRefGoogle Scholar
  115. 115.
    McCann SJ, White LO, Keevil B. Assay of teicoplanin in serum: comparison of high-performance liquid chromatography and fluorescence polarization immunoassay. J Antimicrob Chemother. 2002;50(1):107–10.CrossRefGoogle Scholar
  116. 116.
    Zhu M, Zhang L, He Q, Zhao J, Limin G, Shi J. Mesoporous bioactive glass-coated poly(l-lactic acid) scaffolds: a sustained antibiotic drug release system for bone repairing. J Mater Chem. 2011;21(4):1064–72.CrossRefGoogle Scholar
  117. 117.
    Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–38.CrossRefGoogle Scholar
  118. 118.
    Boyle VJ, Fancher ME, Ross RW Jr. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob Agents Chemother. 1973;3(3):418–24.CrossRefGoogle Scholar
  119. 119.
    Wahlig H, Dingeldein E, Bergmann R, Reuss K. The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. J Bone Joint Surg. 1978;60B(2):270–5.Google Scholar
  120. 120.
    Seligson D, Popham GJ, Voos K, Henry SL, Faghri M. Antibiotic-leaching from polymethylmethacrylate beads. J Bone Joint Surg. 1993;75(5):714–20.Google Scholar
  121. 121.
    Arcos D, Ragel CV, Vallet-Regí M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22(7):701–8.CrossRefGoogle Scholar
  122. 122.
    Vallet-Regí M, Arcos D, Pérez-Pariente J. Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J Biomed Mater Res. 2000;51(1):23–8.CrossRefGoogle Scholar
  123. 123.
    Zhang P, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials. 2009;30(1):58–70.CrossRefGoogle Scholar
  124. 124.
    Katanec D, Pavelić B, Ivasović Z. Efficiency of polylactide/polyglycolide copolymers bone replacements in bone defects healing measured by densitometry. Collegium antropologicum. 2004;28(1):331–6.Google Scholar
  125. 125.
    Bertoldi C, Zaffe D, Consolo U. Polylactide/polyglycolide copolymer in bone defect healing in humans. Biomaterials. 2008;29(12):1817–23.CrossRefGoogle Scholar
  126. 126.
    Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Comp Sci Technol. 2003;63(16):2417–29.CrossRefGoogle Scholar
  127. 127.
    Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Controlled Release. 2005;107(3):463–73.CrossRefGoogle Scholar
  128. 128.
    Wu C, Zhu Y, Chang J, Zhang Y, Xiao Y. Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability. J Biomedical Mater Res Part B Appl Biomater. 2010;94B(1):32–43.Google Scholar
  129. 129.
    Halder A, Mukherjee S, Sa B. Development and evaluation of polyethyleneimine-treated calcium alginate beads for sustained release of diltiazem. J Microencapsul. 2005;22(1):67–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Biomaterials, University of Erlangen-NurembergErlangenGermany

Personalised recommendations