Synthesis of injectable and cohesive nano hydroxyapatite scaffolds

  • Nitin Pratap Varma
  • Subhadra Garai
  • Arvind Sinha
Article

Abstract

Biomimetically synthesized nanosized hydroxyapatite particles have been converted into an injectable paste using a neutral phosphate buffer. Synthesized system manifested a self setting behavior at 37°C in 20 min and revealed a macroporous self assembled microstructure. Stability of the injectable hydroxyapatite has been confirmed in aqueous medium as well as in human blood. Effect of ball milling was also studied on the stability of the system.

References

  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.CrossRefGoogle Scholar
  2. 2.
    Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the at and future directions of scaffold based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.CrossRefGoogle Scholar
  3. 3.
    Habraken W, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–48.CrossRefGoogle Scholar
  4. 4.
    Guha AK, Singh S, Kumaresan R, nayar S, Sinha A. Mesenchymal cell response to nanosized biphasic calcium phosphate nanocomposites. Colloids Surf B 2009; 73:146–151.Google Scholar
  5. 5.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced function of osteoclast like cells on nanophase ceramics. Biomaterials. 2001;22:1327–33.CrossRefGoogle Scholar
  6. 6.
    Webster TJ, Siegel RW, Bizios R. Enhanced function of osteoblast on nanophase ceramics. Biomaterials. 2000;21:1803–10.CrossRefGoogle Scholar
  7. 7.
    Sujatha G, Sinha A, Singh S. Cells behaviour in presence of nano-scaffolds. J Biomed Nanotech. 2011;7:43–4.CrossRefGoogle Scholar
  8. 8.
    Habibovic P, de Groot K. Osteoinductive biomaterials-properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32.CrossRefGoogle Scholar
  9. 9.
    Youssef JA, Salas VM, Loshiavo RG. Management of painful osteoporotic vertebral fractures: vertebroplasty and kyphoplasty. Oper Tech Ortho. 2003;13:222–6.CrossRefGoogle Scholar
  10. 10.
    Bohner M, Lemaitre J, Cordey J, Gogolewski S, Ring TA, Perren SM. Potential use of biodegradable bone cement in bone surgery: holding strength of screws in reinforced osteoporotic bone. Orthopaedic Trans. 1992;16:401–2.Google Scholar
  11. 11.
    Yu T, Ye J, Wang Y. Synthesis and property of a novel calcium phosphate cement. J Biomed Mater Res B. 2009;90:745–51.Google Scholar
  12. 12.
    Philips FM. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine. 2003;28:S45–53.Google Scholar
  13. 13.
    Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J. 2001;10:S205–13.CrossRefGoogle Scholar
  14. 14.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.CrossRefGoogle Scholar
  15. 15.
    Fernandez E, Gill FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med 1999; 10:169–176.Google Scholar
  16. 16.
    Brown WE, Chow LC. Dental restorative cement pastes. US patent No. 4 518 430, 1985, American Dental Association Health.Google Scholar
  17. 17.
    Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24:1521–6.CrossRefGoogle Scholar
  18. 18.
    Bohner M, Lemaitre J, Ring TA. Effects of sulfate, pyrophosphate and citrate ions on the physicochemical properties of cements made of beta-tricalcium phosphate-phosphoric acid water mixtures. J Am Ceram Soc. 1996;79:1427–34.CrossRefGoogle Scholar
  19. 19.
    Hou Q, De Bank PA, Shakesheff KM. Injectable scaffold for tissue regeneration. J Mater Chem. 2004;14:1915–23.CrossRefGoogle Scholar
  20. 20.
    Komath M, Varma HK, Sivakumar R. On the development of an apatitic bone cement. Bull Mater Sci. 2000;23:135–40.CrossRefGoogle Scholar
  21. 21.
    Komath M, Varma HK. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci. 2003;26:415–22.CrossRefGoogle Scholar
  22. 22.
    Sinha A, Nayar S, Agrawal A, Bhattacharya D, Ramachandrarao P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic and biopolymers. J Am Ceram Soc. 2003;86:357–60.CrossRefGoogle Scholar
  23. 23.
    Nayar S, Sinha A. Systematic evolution of a porous hydroxyapatite-poly(vinyl alcohol)–gelatin composite. Colloids Surf B. 2004;35:29–32.CrossRefGoogle Scholar
  24. 24.
    Sinha A, Mishra T, Ravishanker N. Polymer mediated synthesis of hydroxyapatite microsphere for drug delivery. J Mater Sci Mater Med. 2008;19:2008–11.CrossRefGoogle Scholar
  25. 25.
    Chow LC, Takagi S. A natural bone cement—a laboratory novelty led to the development of revolutionary new biomaterials. J Res Nat Inst Stand Technol. 2001;106:1029–33.CrossRefGoogle Scholar
  26. 26.
    Bohner M, Doebelin N, Baroud G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur Cells Mater. 2006;12:26–35.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nitin Pratap Varma
    • 1
  • Subhadra Garai
    • 1
  • Arvind Sinha
    • 1
  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations