Osteoblast-like cell response to calcium phosphate coating chemistry and morphology on etched silicon surfaces

  • George A. Burke
  • Chris J. Rea
  • Fergal G. Horgan
  • Marie Turkington
  • Adrian R. Boyd
  • Brian J. Meenan


Being able to control the behaviour of osteoblast-like cells on a surface may provide a genuine insight into the material surface characteristics and help in creating a successful coating/cell interface. The possibility of creating a micro-environment that can induce proliferation, differentiation and mineralisation of bone cells in vitro, by successfully combining both chemistry and topography of a micro-fabricated substrate is an area that requires a multi-disciplinary approach. Utilising sputter deposition, a process that lends itself to high processability, in conjunction with photolithography allowing for the creation of highly repeatable etched surfaces, we aim to provide a successful combination of chemistry and topography. Correlating the substrate conditions with resultant osteoblast biological function and activity can ultimately be used with a view to modulating the behavior of osteoblast-like cells in vitro.


  1. 1.
    Lu YP, et al. Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials. 2004;25(18):4393–403.CrossRefGoogle Scholar
  2. 2.
    Li H, et al. Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Surf Coat Technol. 2004;182(2–3):227–36.CrossRefGoogle Scholar
  3. 3.
    Wang J, et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials. 2004;25(4):583–92.CrossRefGoogle Scholar
  4. 4.
    Manso M, et al. Surface and interface analysis of hydroxyapatite/TiO2 biocompatible structures. Mater Sci Eng C. 2003;23(3):451–4.CrossRefGoogle Scholar
  5. 5.
    O’Hare P, et al. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials. 2010;31(3):515–22.CrossRefGoogle Scholar
  6. 6.
    Boyd AR, et al. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS. J Mater Sci Mater Med. 2011;22(1):71–84.CrossRefGoogle Scholar
  7. 7.
    Wolke JGC, et al. In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants. Biomaterials. 2003;24(15):2623–9.CrossRefGoogle Scholar
  8. 8.
    Nelea V, et al. Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surf Coat Technol. 2003;173(2–3):315–22.CrossRefGoogle Scholar
  9. 9.
    Thian ES, et al. Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: an in vitro study using acellular simulated body fluid. J Biomed Mater Res B Appl Biomater. 2006;76(2):326–33.Google Scholar
  10. 10.
    Ahmad M, McCarthy MB, Gronowicz G. An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials. 1999;20(3):211–20.CrossRefGoogle Scholar
  11. 11.
    Midy V, Dard M, Hollande E. Evaluation of the effect of three calcium phosphate powders on osteoblast cells. J Mater Sci Mater Med. 2001;12(3):259–65.CrossRefGoogle Scholar
  12. 12.
    Domke J, et al. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf B Biointerfaces. 2000;19(4):367–79.CrossRefGoogle Scholar
  13. 13.
    Rodan SB, et al. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 1987;47(18):4961–6.Google Scholar
  14. 14.
    Murray E, et al. Characterization of a human osteoblastic osteosarcoma cell line (SAOS-2) with high bone alkaline phosphatase activity. J Bone Miner Res. 1987;2(3):231–8.CrossRefGoogle Scholar
  15. 15.
    Ku CH, et al. Effect of different Ti-6Al-4 V surface treatments on osteoblasts behaviour. Biomaterials. 2002;23(6):1447–54.CrossRefGoogle Scholar
  16. 16.
    Scheven BA, Marshall D, Aspden RM. In vitro behaviour of human osteoblasts on dentin and bone. Cell Biol Int. 2002;26(4):337–46.CrossRefGoogle Scholar
  17. 17.
    Degasne I, et al. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64(6):499–507.CrossRefGoogle Scholar
  18. 18.
    Morais S, et al. Effects of AISI 316L corrosion products in vitro bone formation. Biomaterials. 1998;19(11–12):999–1007.CrossRefGoogle Scholar
  19. 19.
    Kuo PL, et al. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells. J Pharmacol Exp Ther. 2005;314(3):1290–9.CrossRefGoogle Scholar
  20. 20.
    Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates in studies in inorganic chemistry 18. Amsterdam: Elsevier; 1994. p. 111.Google Scholar
  21. 21.
    Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13(1):194–207.CrossRefGoogle Scholar
  22. 22.
    Slósarczyk A, et al. The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different Ca/P ratios. Ceramics Int. 1997;23(4):297–304.CrossRefGoogle Scholar
  23. 23.
    Tong W, et al. Preferred orientation of plasma sprayed hydroxyapatite coatings. J Mater Sci. 1996;31(14):3739–42.CrossRefGoogle Scholar
  24. 24.
    Roome CM, Adam CD. Crystallite orientation and anisotropic strains in thermally sprayed hydroxyapatite coatings. Biomaterials. 1995;16(9):691–6.CrossRefGoogle Scholar
  25. 25.
    Long JD, et al. Structure, bonding state and in vitro study of Ca–P–Ti film deposited on Ti6Al4 V by RF magnetron sputtering. Mater Sci Eng C. 2002;20(1–2):175–80.CrossRefGoogle Scholar
  26. 26.
    Yan L, Leng Y, Weng L-T. Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials. 2003;24(15):2585–92.CrossRefGoogle Scholar
  27. 27.
    Jha LJ, Santos JD, Knowles JC. Characterization of apatite layer formation on P2O5-CaO, P2O5-CaO-Na2O, and P2O5-CaO-Na2O-Al2O3 glass hydroxyapatite composites. J Biomed Mater Res. 1996;31(4):481–6.CrossRefGoogle Scholar
  28. 28.
    Ong JL, et al. Surface characterization of ion-beam sputter-deposited Ca-P coatings after in vitro immersion. Colloids Surf A Physicochem Eng Aspects. 1994;87(2):151–62.CrossRefGoogle Scholar
  29. 29.
    Yoshinari M, et al. Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res. 1997;37(1):60–7.CrossRefGoogle Scholar
  30. 30.
    Lo WJ, Grant DM. Hydroxyapatite thin films deposited onto uncoated and (Ti, Al, V)N-coated Ti alloys. J Biomed Mater Res. 1999;46(3):408–17.CrossRefGoogle Scholar
  31. 31.
    Turkington M, Joiner A, Meenan BJ. Thin film hydroxyapatite as a model dental surface key engineering materials. Bioceramics. 2003;15(240–242):295–8.Google Scholar
  32. 32.
    Wolke JG, de Groot K, Jansen JA. Subperiosteal implantation of various RF magnetron sputtered Ca-P coatings in goats. J Biomed Mater Res. 1998;43(3):270–6.CrossRefGoogle Scholar
  33. 33.
    Wolke JG, et al. Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions. Biomaterials. 1997;18(6):483–8.CrossRefGoogle Scholar
  34. 34.
    Wolke JG, et al. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res. 1994;28(12):1477–84.CrossRefGoogle Scholar
  35. 35.
    Ong JL, Raikar GN, Smoot TM. Properties of calcium phosphate coatings before and after exposure to simulated biological fluid. Biomaterials. 1997;18(19):1271–5.CrossRefGoogle Scholar
  36. 36.
    Boyd AR, Meenan BJ, Leyland NS. Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf Coat Technol. 2006;200(20–21):6002–13.CrossRefGoogle Scholar
  37. 37.
    Boyd AR, et al. The Influence of argon gas pressure on co-sputtered calcium phosphate thin films. Nucl Instr Method Phys Res Section B Beam Interact Mater Atoms. 2007;258(2):421–8.CrossRefGoogle Scholar
  38. 38.
    Boyd A, Akay M, Meenan BJ. Influence of target surface degradation on the properties of r.f. magnetron-sputtered calcium phosphate coatings. Surf Interface Anal. 2003;35(2):188–98.CrossRefGoogle Scholar
  39. 39.
    van Dijk K, et al. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials. 1996;17(4):405–10.CrossRefGoogle Scholar
  40. 40.
    Yang Y, et al. Characterization and dissolution behavior of sputtered calcium phosphate coatings after different postdeposition heat treatment temperatures. J Oral Implantol. 2003;29(6):270–7.CrossRefGoogle Scholar
  41. 41.
    de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H. 1998;212(2):137–47.Google Scholar
  42. 42.
    Ducy P. Cbfa1: a molecular switch in osteoblast biology. Dev Dyn. 2000;219(4):461–71.CrossRefGoogle Scholar
  43. 43.
    Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11(5):343–6.CrossRefGoogle Scholar
  44. 44.
    Sykaras N, Opperman LA. Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci. 2003;45(2):57–73.CrossRefGoogle Scholar
  45. 45.
    Xiao Y, et al. Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplant. 2004;13(1):15–25.Google Scholar
  46. 46.
    Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med. 1997;8(2):154–63.CrossRefGoogle Scholar
  47. 47.
    Murakami N, et al. Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 (rhBMP-2) and a synthetic polymer. J Biomed Mater Res. 2002;62(2):169–74.CrossRefGoogle Scholar
  48. 48.
    van der Horst G, et al. Differentiation of murine preosteoblastic KS483 cells depends on autocrine bone morphogenetic protein signaling during all phases of osteoblast formation. Bone. 2002;31(6):661–9.CrossRefGoogle Scholar
  49. 49.
    Tang CH, et al. Enhancement of fibronectin synthesis and fibrillogenesis by BMP-4 in cultured rat osteoblast. J Bone Miner Res. 2003;18(3):502–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • George A. Burke
    • 1
  • Chris J. Rea
    • 1
  • Fergal G. Horgan
    • 1
  • Marie Turkington
    • 1
  • Adrian R. Boyd
    • 1
  • Brian J. Meenan
    • 1
  1. 1.Northern Ireland Bioengineering CentreUniversity of UlsterNewtownabbeyUK

Personalised recommendations