Local bisphosphonate release versus hydroxyapatite coating for stainless steel screw fixation in rat tibiae

  • F. Agholme
  • T. Andersson
  • P. Tengvall
  • P. Aspenberg


Implant fixation in bone can be improved by a coating that delivers bisphosphonates locally, or by a hydroxyapatite (HA) coating. In this study, we compared these different types of coatings. For mechanical testing, 30 rats were assigned into three groups, and similar screws were implanted bilaterally in the proximal tibiae. The rats received screws that were either uncoated, coated with nano-crystalline hydroxyapatite or coated with a bisphosphonate releasing protein matrix. After 4 weeks, one screw was subjected to pull-out testing, and the contra-lateral one to torsion testing. For morphology, 30 rats were assigned to similar treatment groups, but received only one screw each. Bisphosphonates enhanced the pull-out force by 41% (P = 0.02) compared to controls, HA increased the pull-out force although not significantly. Conversely, HA increased the maximal torque by 64% (P = 0.02). Morphometry showed higher bone volume around bisphosphonate screws in comparison to HA-coated screws (P < 0.001) and controls (P < 0.001). The results suggest that bisphosphonates improve fixation by increasing the amount of surrounding bone, whereas HA mainly improves bone to implant attachment.



This study was supported by the Swedish Research council 2009-6725 and BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy at Sahlgrenska Academy, University of Gothenburg.


  1. 1.
    Karrholm J, Borssen B, Lowenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br. 1994;76(6):912–7.Google Scholar
  2. 2.
    Mjoberg B. The theory of early loosening of hip prostheses. Orthopedics. 1997;20(12):1169–75.Google Scholar
  3. 3.
    Ryd L. Roentgen stereophotogrammetric analysis of prosthetic fixation in the hip and knee joint. Clin Orthop Relat Res. 1992;276:56–65.Google Scholar
  4. 4.
    Wermelin K, Suska F, Tengvall P, Thomsen P, Aspenberg P. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone. 2008;42(2):365–71.CrossRefGoogle Scholar
  5. 5.
    Tengvall P, Skoglund B, Askendal A, Aspenberg P. Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials. 2004;25(11):2133–8.CrossRefGoogle Scholar
  6. 6.
    Gao Y, Zou S, Liu X, Bao C, Hu J. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. Biomaterials. 2009;30(9):1790–6.CrossRefGoogle Scholar
  7. 7.
    Stadelmann VA, Gauthier O, Terrier A, Bouler JM, Pioletti DP. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study. Eur Cell Mater. 2008;16:10–6.Google Scholar
  8. 8.
    Peter B, Gauthier O, Laib S, Bujoli B, Guicheux J, Janvier P, van Lenthe GH, Muller R, Zambelli PY, Bouler JM, Pioletti DP. Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A. 2006;76(1):133–43.Google Scholar
  9. 9.
    Bobyn JD, McKenzie K, Karabasz D, Krygier JJ, Tanzer M. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. J Bone Joint Surg Am. 2009;91(Suppl 6):23–31.CrossRefGoogle Scholar
  10. 10.
    Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.CrossRefGoogle Scholar
  11. 11.
    Dhert WJ, Thomsen P, Blomgren AK, Esposito M, Ericson LE, Verbout AJ. Integration of press-fit implants in cortical bone: a study on interface kinetics. J Biomed Mater Res. 1998;41(4):574–83.CrossRefGoogle Scholar
  12. 12.
    Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 2008;87(2):299–307.Google Scholar
  13. 13.
    Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res A. 2010;92(3):913–21.Google Scholar
  14. 14.
    Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials. 2004;25(19):4601–6.CrossRefGoogle Scholar
  15. 15.
    Vercaigne S, Wolke JG, Naert I, Jansen JA. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clin Oral Implants Res. 1998;9(4):261–71.CrossRefGoogle Scholar
  16. 16.
    Vidigal GM Jr, Aragones LC, Campos A Jr, Groisman M. Histomorphometric analyses of hydroxyapatite-coated and uncoated titanium dental implants in rabbit cortical bone. Implant Dent. 1999;8(3):295–302.CrossRefGoogle Scholar
  17. 17.
    Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.CrossRefGoogle Scholar
  18. 18.
    Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):172–84.CrossRefGoogle Scholar
  19. 19.
    LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14(1):65–88.CrossRefGoogle Scholar
  20. 20.
    Morscher EW, Hefti A, Aebi U. Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating. J Bone Joint Surg Br. 1998;80(2):267–72.CrossRefGoogle Scholar
  21. 21.
    Bloebaum RD, Beeks D, Dorr LD, Savory CG, DuPont JA, Hofmann AA. Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin Orthop Relat Res. 1994;298:19–26.Google Scholar
  22. 22.
    Bloebaum RD, Dupont JA. Osteolysis from a press-fit hydroxyapatite-coated implant. A case study. J Arthroplasty. 1993;8(2):195–202.CrossRefGoogle Scholar
  23. 23.
    Hong Z, Mello A, Yoshida T, Luan L, Stern PH, Rossi A, Ellis DE, Ketterson JB. Osteoblast proliferation on hydroxyapatite coated substrates prepared by right angle magnetron sputtering. J Biomed Mater Res A. 2010;93(3):878–85.Google Scholar
  24. 24.
    Yang GL, He FM, Hu JA, Wang XX, Zhao SF. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):782–9.CrossRefGoogle Scholar
  25. 25.
    Skoglund B, Holmertz J, Aspenberg P. Systemic and local ibandronate enhance screw fixation. J Orthop Res. 2004;22(5):1108–13.CrossRefGoogle Scholar
  26. 26.
    Wermelin K, Aspenberg P, Linderback P, Tengvall P. Bisphosphonate coating on titanium screws increases mechanical fixation in rat tibia after two weeks. J Biomed Mater Res A. 2008;86(1):220–7.Google Scholar
  27. 27.
    Aronsson H. Delivery of Bisphosphonates from FibMat Matrix [Master]. Linköping: Linköping University; 2008.Google Scholar
  28. 28.
    Kjellin P, Andersson M, inventors (2005) Synthetic nano-sized crystalline calcium phosphate and a method of protection. Sweden patent WO2005/123579. 2005.Google Scholar
  29. 29.
    Arvidsson A, Franke-Stenport V, Andersson M, Kjellin P, Sul YT, Wennerberg A. Formation of calcium phosphates on titanium implants with four different bioactive surface preparations. An in vitro study. J Mater Sci Mater Med. 2007;18(10):1945–54.CrossRefGoogle Scholar
  30. 30.
    Branemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997;18(14):969–78.CrossRefGoogle Scholar
  31. 31.
    Mohammadi S, Esposito M, Hall J, Emanuelsson L, Krozer A, Thomsen P. Long-term bone response to titanium implants coated with thin radiofrequent magnetron-sputtered hydroxyapatite in rabbits. Int J Oral Maxillofac Implants. 2004;19(4):498–509.Google Scholar
  32. 32.
    Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–303.CrossRefGoogle Scholar
  33. 33.
    Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A. Effect of hydroxyapatite and titania nanostructures on early in vivo bone response. Clin Implant Dent Relat Res. 2008;10(4):245–54.Google Scholar
  34. 34.
    Greiner SH, Wildemann B, Back DA, Alidoust M, Schwabe P, Haas NP, Schmidmaier G. Local application of zoledronic acid incorporated in a poly(D, L-lactide)-coated implant accelerates fracture healing in rats. Acta Orthop. 2008;79(5):717–25.CrossRefGoogle Scholar
  35. 35.
    Kajiwara H, Yamaza T, Yoshinari M, Goto T, Iyama S, Atsuta I, Kido MA, Tanaka T. The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. Biomaterials. 2005;26(6):581–7.CrossRefGoogle Scholar
  36. 36.
    Peter B, Pioletti DP, Laib S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60.CrossRefGoogle Scholar
  37. 37.
    Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clin Orthop Relat Res. 2005;441:30–9.CrossRefGoogle Scholar
  38. 38.
    Andersson T, Agholme F, Aspenberg P, Tengvall P. Surface immobilized zoledronate improves screw fixation in rat bone: a new method for the coating of metal implants. J Mater Sci Mater Med. 2010;21(11):3029–37.CrossRefGoogle Scholar
  39. 39.
    Agholme F, Aspenberg P. Experimental results of combining bisphosphonates with allograft in a rat model. J Bone Joint Surg Br. 2009;91(5):670–5.CrossRefGoogle Scholar
  40. 40.
    Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364(18):1728–37.CrossRefGoogle Scholar
  41. 41.
    Giusti A, Hamdy NA, Papapoulos SE. Atypical fractures of the femur and bisphosphonate therapy: a systematic review of case/case series studies. Bone. 2010;47(2):169–80.CrossRefGoogle Scholar
  42. 42.
    Ruggiero SL. Bisphosphonate-related osteonecrosis of the jaw: an overview. Ann N Y Acad Sci. 2011;1218:38–46.CrossRefGoogle Scholar
  43. 43.
    Wermelin K, Tengvall P, Aspenberg P. Surface-bound bisphosphonates enhance screw fixation in rats–increasing effect up to 8 weeks after insertion. Acta Orthop. 2007;78(3):385–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Agholme
    • 1
  • T. Andersson
    • 1
  • P. Tengvall
    • 2
  • P. Aspenberg
    • 1
  1. 1.Orthopedics, Department of Clinical and Experimental Medicine, Faculty of MedicineLinköping UniversityLinköpingSweden
  2. 2.Department of Biomaterials, Institute for Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden

Personalised recommendations