Assay of in vitro osteoclast activity on dentine, and synthetic calcium phosphate bone substitutes

  • Zahi Badran
  • Paul Pilet
  • Elise Verron
  • Jean-Michel Bouler
  • Pierre Weiss
  • Gaël Grimandi
  • Jérôme Guicheux
  • Assem Soueidan


Resorption of synthetic bone substitute materials is essential for the integration of these materials into the natural bone remodeling process. Osteoclast behavior in the presence of calcium phosphate bioceramics (CaPB) is partially understood, and a better understanding of the underlying mechanisms is expected to facilitate the development of new synthetic bone substitutes to improve bone regeneration. In the present study, our aim was to investigate osteoclastic resorption of various synthetic CaPB. We used neonatal total rabbit bone cells to generate osteoclasts. Osteoclast-generated resorption on dentine and multiple CaPB was investigated by quantifying the surface resorbed and measuring tartrate resistant acid phosphatase (TRAP) enzyme activity. In this study, we observed that osteoclastic cells responded in a different way to each substrate. Both dentine and CaPB were resorbed but the quantitative results for the surface resorbed and TRAP activity showed a specific response to each substrate and that increased mineral density seemed to inhibit osteoclast activity.


Bone Substitute Tartrate Resistant Acid Phosphatase Biphasic Calcium Phosphate Resorption Lacuna Bone Substitute Material 



This work was supported by a grant from INSERM and the Région des pays de la Loire. We would like to thank Dr. Laetitia Obadia for kindly providing the biomaterial pellets.


  1. 1.
    Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994;55(3):273–86.CrossRefGoogle Scholar
  2. 2.
    Roodman GD, Windle JJ. Paget disease of bone. J Clin Invest. 2005;115(2):200–8.Google Scholar
  3. 3.
    Haynes DR. Bone lysis and inflammation. Inflamm Res. 2004;53(11):596–600.CrossRefGoogle Scholar
  4. 4.
    Blair HC, Athanasou NA. Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol. 2004;19(1):189–99.Google Scholar
  5. 5.
    El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87–101.CrossRefGoogle Scholar
  6. 6.
    Soueidan A, Gan OI, Gouin F, Godard A, Heymann D, Jacques Y, Daculsi G. Culturing of cells from giant cell tumour of bone on natural and synthetic calcified substrata: the effect of leukaemia inhibitory factor and vitamin D3 on the resorbing activity of osteoclast-like cells. Virchows Arch. 1995;426(5):469–77.CrossRefGoogle Scholar
  7. 7.
    Kwong CH, Burns WB, Cheung HS. Solubilization of hydroxyapatite crystals by murine bone cells, macrophages and fibroblasts. Biomaterials. 1989;10(9):579–84.CrossRefGoogle Scholar
  8. 8.
    Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol. 2000;192(1):4–13.CrossRefGoogle Scholar
  9. 9.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.CrossRefGoogle Scholar
  10. 10.
    Saltel F, Destaing O, Bard F, Eichert D, Jurdic P. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell. 2004;15(12):5231–41.CrossRefGoogle Scholar
  11. 11.
    Chambers TJ, Thomson BM, Fuller K. Effect of substrate composition on bone resorption by rabbit osteoclasts. J Cell Sci. 1984;70:61–71.Google Scholar
  12. 12.
    Obadia L, Rouillon T, Bujoli B, Daculsi G, Bouler JM. Calcium-deficient apatite synthesized by ammonia hydrolysis of dicalcium phosphate dihydrate: influence of temperature, time, and pressure. J Biomed Mater Res B. 2007;80(1):32–42.Google Scholar
  13. 13.
    Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials. 1997;18(15):1037–41.CrossRefGoogle Scholar
  14. 14.
    Jones SJ, Arora M, Boyde A. The rate of osteoclastic destruction of calcified tissues is inversely proportional to mineral density. Calcif Tissue Int. 1995;56(6):554–8.CrossRefGoogle Scholar
  15. 15.
    Gomi K, Lowenberg B, Shapiro G, Davies JE. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials. 1993;14(2):91–6.CrossRefGoogle Scholar
  16. 16.
    Shimizu H, Sakamoto S, Sakamoto M, Lee DD. The effect of substrate composition and condition on resorption by isolated osteoclasts. Bone Miner. 1989;6(3):261–75.CrossRefGoogle Scholar
  17. 17.
    Fuller K, Ross JL, Szewczyk KA, Moss R, Chambers TJ. Bone is not essential for osteoclast activation. PLoS One. 2010;17(5):9.Google Scholar
  18. 18.
    Guicheux J, Heymann D, Rousselle AV, Gouin F, Pilet P, Yamada S, Daculsi G. Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone. 1998;22(1):25–31.CrossRefGoogle Scholar
  19. 19.
    Igarashi KWJ, Stern PH. Effects of a selective cyclooxygenase-2 inhibitor, celecoxib, on bone resorption and osteoclastogenesis in vitro. Biochem Pharmacol. 2002;63(3):523–32.CrossRefGoogle Scholar
  20. 20.
    Grimandi G, Soueidan A, Anjrini AA, Badran Z, Pilet P, Daculsi G, Faucheux C, Bouler JM, Guicheux J. Quantitative and reliable in vitro method combining scanning electron microscopy and image analysis for the screening of osteotropic modulators. Microsc Res Tech. 2006;69(8):606–12.CrossRefGoogle Scholar
  21. 21.
    Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res. 1997;37(3):346–52.CrossRefGoogle Scholar
  22. 22.
    Winkler T, Hoenig E, Huber G, Janssen R, Fritsch D, Gildenhaar R, Berger G, Morlock MM, Schilling AF. Osteoclastic bioresorption of biomaterials: two- and three-dimensional imaging and quantification. Int J Artif Organs. 2010;33(4):198–203.Google Scholar
  23. 23.
    Farina NM, Guzon FM, Pena ML, Cantalapiedra AG. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs. J Mater Sci Mater Med. 2008;19(4):1565–73.CrossRefGoogle Scholar
  24. 24.
    Kirstein B, Chambers TJ, Fuller K. Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem. 2006;98(5):1085–94.CrossRefGoogle Scholar
  25. 25.
    Lees RL, Sabharwal VK, Heersche JN. Resorptive state and cell size influence intracellular pH regulation in rabbit osteoclasts cultured on collagen–hydroxyapatite films. Bone. 2001;28(2):187–94.CrossRefGoogle Scholar
  26. 26.
    Zimolo Z, Wesolowski G, Rodan GA. Acid extrusion is induced by osteoclast attachment to bone. Inhibition by alendronate and calcitonin. J Clin Invest. 1995;96(5):2277–83.CrossRefGoogle Scholar
  27. 27.
    Perdigao J, Lambrechts P, van Meerbeek B, Tome AR, Vanherle G, Lopes AB. Morphological field emission-SEM study of the effect of six phosphoric acid etching agents on human dentine. Dent Mater. 1996;12(4):262–71.CrossRefGoogle Scholar
  28. 28.
    Halleen JM. Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Res. 2003;23(2A):1027–9.Google Scholar
  29. 29.
    Hayman AR, Cox TM. Tartrate-resistant acid phosphatase knockout mice. J Bone Miner Res. 2003;18(10):1905–7.CrossRefGoogle Scholar
  30. 30.
    Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjolander J, Lang P, Norgard M, Wang Y, Zhang SJ. TRACP as an osteopontin phosphatase. J Bone Miner Res. 2003;18(10):1912–5.CrossRefGoogle Scholar
  31. 31.
    Halleen JM, Raisanen S, Salo JJ, Reddy SV, Roodman GD, Hentunen TA, Lehenkari PP, Kaija H, Vihko P, Vaananen HK. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem. 1999;274(33):22907–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zahi Badran
    • 1
    • 2
  • Paul Pilet
    • 1
  • Elise Verron
    • 1
  • Jean-Michel Bouler
    • 1
  • Pierre Weiss
    • 1
  • Gaël Grimandi
    • 1
  • Jérôme Guicheux
    • 1
  • Assem Soueidan
    • 1
    • 2
  1. 1.Osteo-Articular and Dental Tissue Engineering Laboratory L.I.O.A.D, Department of Periodontology, School of Dental SurgeryINSERM U791Nantes Cedex 2France
  2. 2.Department of Periodontology, School of dental SurgeryNantes University HospitalNantes Cedex 2France

Personalised recommendations