Novel biodegradable, biomimetic and functionalised polymer scaffolds to prevent expansion of post-infarct left ventricular remodelling

  • Caterina CristalliniEmail author
  • Mariacristina Gagliardi
  • Niccoletta Barbani
  • Daniela Giannessi
  • Giulio D. Guerra


Over the past decade, a large number of strategies and technologies have been developed to reduce heart failure progression. Among these, cardiac tissue engineering is one of the most promising. Aim of this study is to develop a 3D scaffold to treat cardiac failure. A new three-block copolymer, obtained from δ-valerolactone and polyoxyethylene, was synthesised under high vacuum without catalyst. Copolymer/gelatine blends were microfabricated to obtain a ECM-like geometry. Structures were studied under morphological, mechanical, degradation and biological aspects. To prevent left ventricular remodelling, constructs were biofunctionalises with molecularly imprinted nanoparticles towards the matrix metalloproteinase MMP-9. Results showed that materials are able to reproduce the ECM structure with high resolution, mechanical properties were in the order of MPa similar to those of the native myocardium and cell viability was verified. Nanoparticles showed the capability to rebind MMP-9 (specific rebinding 18.67) and to be permanently immobilised on the scaffold surface.


Left Ventricular Assistance Device Ventricular Assistance Device Soft Lithography Molecular Imprint Cardiac Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would acknowledge Dr. F. Boccafoschi (University of Eastern Piedmont “Amedeo Avogadro”, Novara, Italy) for cytotoxicity tests and Dr. T. Prescimone (Institute of Clinical Physiology, National Research Council, Pisa, Italy) for zymography analysis. This work was financially supported by Italian Ministry of University and Research PRIN-2008 grant (Bioartificial stem cell niches for cardiac tissue engineering, 2010–2012).


  1. 1.
    Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR. Myocardial tissue engineering. Br Med Bull. 2008;87:31–47.CrossRefGoogle Scholar
  2. 2.
    Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 2003;8:259–69.CrossRefGoogle Scholar
  3. 3.
    Leor J, Amsalem Y, Cohen S. Cells, scaffold, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105:151–63.CrossRefGoogle Scholar
  4. 4.
    Prabhakaran MP, Venugopal J, Kai D, Ramakrishna S. Biomimetic material strategies for cardiac tissue engineering. Mater Sci Eng C. 2011;31:503–13.CrossRefGoogle Scholar
  5. 5.
    Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers. Trends Polym Sci. 1993;1:261–7.Google Scholar
  6. 6.
    Cristallini C, Lazzeri L, Cascone MG, Polacco G, Lupinacci D, Barbani N. Enzyme-based bioartificial polymeric materials. The system a-amylase-poly(vinyl alcohol). Polym Int. 1997;44:510–6.CrossRefGoogle Scholar
  7. 7.
    Cristallini C, Barbani N, Giusti P, Lazzeri L, Cascone MG, Ciardelli G. Polymerization onto biological templates, a new way to obtain bioartificial polymeric materials. Macromol Chem Phys. 2001;202:2104–13.CrossRefGoogle Scholar
  8. 8.
    Guerra GD, Cristallini C, Rosellini E, Barbani N. A hydroxyapatite-collagen composite useful to make bioresorbable scaffolds for bone reconstruction. Adv Sci Technol. 2010;76:133–8.CrossRefGoogle Scholar
  9. 9.
    Rosellini E, Cristallini C, Barbani N, Vozzi G, D’Acunto M, Ciardelli G, Giusti P. New bioartificial systems and biodegradable synthetic polymers for cardiac tissue engineering: a preliminary screening. Biomed Eng Appl Basis Commun. 2010;22:497–507.CrossRefGoogle Scholar
  10. 10.
    Mukherjee S, Gualandi C, Focarete ML, Ravichandran R, Venugopal JR, Raghunath M, Ramakrishna S. Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. J Mater Sci Mater Med. 2011;22:1689–99.CrossRefGoogle Scholar
  11. 11.
    Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater. 2011;98B:379–86.CrossRefGoogle Scholar
  12. 12.
    Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliver Rev. 2004;56:1635–47.CrossRefGoogle Scholar
  13. 13.
    Chen CS, Mrksich M, Huang S, Whitsides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.CrossRefGoogle Scholar
  14. 14.
    Wang PY, Yu J, Lin JH, Tsai WB. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011. doi: 10.1016/j.actbio.2011.05.021.
  15. 15.
    Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YCF, Tan LP. Porous polycaprolactone for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomateralia. 2010;6:2028–34.CrossRefGoogle Scholar
  16. 16.
    Ciardelli G, Chiono V, Cristallini C, Barbani N, Ahluwalia A, Vozzi G, Previti A, Tantussi G, Giusti P. Innovative tissue engineering structures through advanced manufacturing technologies. J Mater Sci Mater Med. 2004;15:305–10.CrossRefGoogle Scholar
  17. 17.
    Rosellini E, Vozzi G, Barbani N, Giusti P, Cristallini C. Three-dimensional microfabricated scaffolds with cardiac extracellular matrix-like architecture. Int J Artif Organs. 2010;33:885–94.Google Scholar
  18. 18.
    Causa F, Netti PA, Ambrosio L. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials. 2007;28(34):5093–9.CrossRefGoogle Scholar
  19. 19.
    Khademhosseini A, Langer R. Nanobiotechnology for drug delivery and tissue engineering. Chem Eng Prog. 2006;102:38–42.Google Scholar
  20. 20.
    Rechichi A, Cristallini C, Vitale U, Ciardelli G, Barbani N, Vozzi G, Giusti P. New biomedical devices with selective peptide recognition properties. Part 1: characterization and cytotoxicity of molecularly imprinted polymers. J Cell Mol Med. 2007;11(6):1367–76.CrossRefGoogle Scholar
  21. 21.
    Mosbach K, Ramström O. The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology. 1996;14:163–70.CrossRefGoogle Scholar
  22. 22.
    Shea KJ. Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites. Trends Polym Sci. 1994;2:166–73.Google Scholar
  23. 23.
    Steinke J, Sherrington D, Dunkin I. Imprinting of synthetic polymers using molecular templates. Adv Polym Sci. 1995;123:80–125.Google Scholar
  24. 24.
    Cristallini C, Ciardelli G, Giusti P, Barbani N. Acrylonitrile–acrylic acid copolymer membrane imprinted with uric acid for clinical uses. Macromol Biosci. 2004;4:31–8.CrossRefGoogle Scholar
  25. 25.
    Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P. Supported imprinted nanospheres for the selective recognition of cholesterol. Biosensors Bioelectron. 2006;21:2329–38.CrossRefGoogle Scholar
  26. 26.
    Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J Membr Sci. 2006;282:284–95.CrossRefGoogle Scholar
  27. 27.
    Rosellini E, Barbani N, Giusti P, Ciardelli G, Cristallini C. Novel bioactive scaffolds with fibronectin recognition nanosites based on molecular imprinting technology. J Appl Polym Sci. 2010;118:3236–44.CrossRefGoogle Scholar
  28. 28.
    Rosellini E, Barbani N, Giusti P, Rechichi A, Cristallini C. Molecularly imprinted nanoparticles with recognition properties towards a laminin H–Tyr–Ile–Gly–Ser–Arg–OH sequence for tissue engineering applications. Biomed Mater. 2010;5:065007.CrossRefGoogle Scholar
  29. 29.
    Cohn D, Younes H. Biodegradable PEO/PLA block copolymers. J Biomed Mater Res. 1988;22:993–1009.CrossRefGoogle Scholar
  30. 30.
    Kimura Y, Matsuzaki Y, Yamame H, Kitao T. Preparation of block copoly(ester-ether) comprising poly(l-lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo. Polymer. 1989;30:1342–9.CrossRefGoogle Scholar
  31. 31.
    Cerrai P, Tricoli M, Andruzzi F, Paci M, Paci M. Synthesis and characterization of polymers from β-propiolactone and poly(ethylene glycol)s. Polymer. 1987;28:831–6.CrossRefGoogle Scholar
  32. 32.
    Cerrai P, Tricoli M, Andruzzi F, Paci M, Paci M. Polyether-polyester block copolymers by non-catalysed polymerization of ε-caprolactone with poly(ethylene glycol). Polymer. 1989;30:338–43.CrossRefGoogle Scholar
  33. 33.
    Cerrai P, Tricoli M. Block copolymers from l-lactide and poly(ethylene glycol) through a non-catalyzed route. Makromol Chem Rapid Commun. 1993;14:529–38.CrossRefGoogle Scholar
  34. 34.
    Sbarbati-Del Guerra R, Cascone MG, Tricoli M, Cerrai P. In vitro validation of poly(ester–ether–ester) block copolymers as biomaterials. Altern Lab Anim. 1993;21:97–101.Google Scholar
  35. 35.
    Cascone MG, Tricoli M, Cerrai P, Sbarbati Del Guerra R. Cell cultures in the biocompatibility study of synthetic materials. Cytotechnology. 1993;11:S137–9.CrossRefGoogle Scholar
  36. 36.
    Cerrai P, Guerra GD, Lelli L, Tricoli M, Sbarbati Del Guerra R, Cascone MG, Giusti P. Poly(ester–ether–ester) block copolymers as biomaterials. J Mater Sci Mater Med. 1994;5:33–9.CrossRefGoogle Scholar
  37. 37.
    Cerrai P, Tricoli M, Lelli L, Guerra GD, Sbarbati Del Guerra R, Cascone MG, Giusti P. Block copolymers of l-lactide and poly(ethylene glycol) for biomedical applications. J Mater Sci Mater Med. 1994;5:308–13.CrossRefGoogle Scholar
  38. 38.
    Sbarbati Del Guerra R, Cristallini C, Rizzi N, Barsacchi R, Guerra GD, Tricoli M, Cerrai P. The biodegradation of poly(ester–ether–ester) block copolymers in a cellular environment in vitro. J Mater Sci Mater Med. 1994;5:891–5.CrossRefGoogle Scholar
  39. 39.
    Sbarbati Del Guerra R, Gazzetti P, Lazzerini G, Cerrai P, Guerra GD, Tricoli M, Cristallini C. Degradation products of poly(ester–ether–ester) block copolymers do not alter endothelial metabolism in vitro. J Mater Sci Mater Med. 1995;6:824–8.CrossRefGoogle Scholar
  40. 40.
    Cerrai P, Cristallini C, Del Chicca MG, Guerra GD, Maltinti S, Sbarbati Del Guerra R, Tricoli M. Hydrolysis of poly(ester–ether–ester) block copolymers in the presence of endothelial cells: in vitro modulation of endothelin release. Polym Bull. 1997;39:53–8.CrossRefGoogle Scholar
  41. 41.
    Guerra GD, Cristallini C, Barbani N, Gagliardi M. Bioresorbable microspheres as devices for the controlled release of paclitaxel. Int J Biol Biomed Eng. 2011;5:121–8.Google Scholar
  42. 42.
    Wu J, Zeng F, Huang X-P, Chung JC-Y, Konecny F, Weisel RD, Li R-K. Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32:579–86.CrossRefGoogle Scholar
  43. 43.
    Vanhoutte D, Schellings M, Pinto Y, Heymans S. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res. 2006;69:604–13.CrossRefGoogle Scholar
  44. 44.
    Krumme D, Wenzel H, Tschesche H. Hydroxamate derivatives of substrate-analogous peptides containing aminomalonic acid are potent inhibitors of matrix metalloproteinases. FEBS Lett. 1998;436:209–12.CrossRefGoogle Scholar
  45. 45.
    Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006;48:907–13.CrossRefGoogle Scholar
  46. 46.
    Chen Q-Z, Harding SE, Ali NN, Lyon AR, Boccaccini AR. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R. 2008;59:1–37.CrossRefGoogle Scholar
  47. 47.
    Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res. 2003;92:1068–78.CrossRefGoogle Scholar
  48. 48.
    Agostoni P, Banfi C. Matrix metalloproteinase and heart failure: is it time to move from research to clinical laboratories? Eur Heart J. 2007;28:659–60.CrossRefGoogle Scholar
  49. 49.
    Zeugolis, Zeugolis. The physiological relevance of wet versus dry differential scanning calorimetry for biomaterial evaluation. Polym Int. 2010;59:1403–7.CrossRefGoogle Scholar
  50. 50.
    Mayes AG, Whitcombe MJ. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Delivery Rev. 2005;57:1742–78.CrossRefGoogle Scholar
  51. 51.
    Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials. 2011;32:3008–20.CrossRefGoogle Scholar
  52. 52.
    Squire IB, Evans J, Leong LNG, Loftus IM, Thompson MM. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Cardiac Fail. 2004;10(4):328–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Caterina Cristallini
    • 1
    Email author
  • Mariacristina Gagliardi
    • 2
  • Niccoletta Barbani
    • 2
  • Daniela Giannessi
    • 3
  • Giulio D. Guerra
    • 1
  1. 1.Institute for Composite and Biomedical Materials, C.N.R.U.O.S. of PisaPisaItaly
  2. 2.Department of Chemical Engineering, Industrial Chemistry and Materials ScienceUniversity of PisaPisaItaly
  3. 3.Institute of Clinical PhysiologyC.N.R.PisaItaly

Personalised recommendations