The generation of hydrophilic polypeptide-siloxane conjugates via n-carboxyanhydride polymerisation

  • Paul D. Thornton
  • Ruairi Brannigan
  • Joanna Podporska
  • Brid Quilty
  • Andreas Heise
Article

Abstract

A novel methodology to create covalently linked polypeptide-siloxane hybrid materials by controlled n-carboxyanhydride ring opening polymerisation is disclosed. Poly-l-glutamic acid and poly-l-lysine conjugated products were formed that possessed excellent surface wettability. In addition, the poly-l-lysine-siloxane hybrids formed demonstrated bactericidal attributes against gram-positive Staphylococcus aureus and gram-negative Escherichia coli. It is anticipated that these materials may be of significance for the generation of hydrophilic siloxane-containing polymers that are commonly employed in contemporary medical devices.

Notes

Acknowledgment

We would like to thank Science Foundation Ireland (SFI) for funding this work (Award: 07/IN1/B1792).

References

  1. 1.
    Kurian A, Prasad S, Dhinojwala A. Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules. 2010;43:2438–43.CrossRefGoogle Scholar
  2. 2.
    Haoa X, Jefferya JL, Wilkiea JS, Meijsa GF, Claytona AB, Watlinga JD, Hoc A, Fernandez V, Acosta C, Yamamoto H, Aly MGM, Parel J-M, Hughes TC. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses. Biomaterials. 2010;31:8153–63.CrossRefGoogle Scholar
  3. 3.
    Fuji T. PDMS-based microfluidic devices for biomedical applications. Microelectron Eng. 2002;61:907–14.CrossRefGoogle Scholar
  4. 4.
    Nazly Pirmoradi F, Jackson JK, Burt HM, Chiao M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip, 2011; Advance Article. doi: 10.1039/C1LC20134D.
  5. 5.
    Kim S-J, Lee JK, Kim JW, Jung J-W, Seo K, Park S-B, Roh K-H, Lee S-R, Hong YH, Kim SJ, Lee Y-S, Kim SJ. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. J Mater Sci Mater Med. 2008;19:2953–62.CrossRefGoogle Scholar
  6. 6.
    Leclerc E, Corlu A, Griscom L, Baudoin R, Legallais C. Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels. Biomaterials. 2006;27:4109–19.CrossRefGoogle Scholar
  7. 7.
    Bodasa DS, Khan-Malek C. Fabrication of long-term hydrophilic surfaces of poly(dimethyl siloxane) using 2-hydroxy ethyl methacrylate. Sensor Actuat B Chem. 2007;120:719–23.CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyay R. When PDMS isn’t the best. What are its weaknesses, and which other polymers can researchers add to their toolboxes? Anal Chem. 2007;79:3248–53.CrossRefGoogle Scholar
  9. 9.
    Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem. 2003;75:6544–54.CrossRefGoogle Scholar
  10. 10.
    Bodasa DS, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensor Actuat B Chem. 2007;123:368–73.CrossRefGoogle Scholar
  11. 11.
    Gibson MI, Cameron NR. Organogelation of sheet–helix diblock copolypeptides. Angew Chem Int Ed. 2008;47:5160–2.CrossRefGoogle Scholar
  12. 12.
    Habraken GJM, Koning CE, Heuts JPA, Heise A. Thiol chemistry on well-defined synthetic polypeptides. Chem Commun. 2009;3612–3614.Google Scholar
  13. 13.
    Soto-Cantu E, Turksen-Selcuk S, Qiu J, Zhou Z, Russo PS. Silica–polypeptide composite particles: controlling shell growth. Langmuir. 2010;26:15604–13.CrossRefGoogle Scholar
  14. 14.
    Wu HM, Pan SR, Chen MW, Wub Y, Wang C, Wen YT, Zeng X, Wu CB. A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection. Biomaterials. 2011;32:1619–34.CrossRefGoogle Scholar
  15. 15.
    Sparksa BJ, Raya JG, Savin DA, Stafford CM, Patton DL. Synthesis of thiol-clickable and block copolypeptide brushes via nickel-mediated surface initiated polymerization of α-amino acid N-carboxyanhydrides (NCAs). Chem Commun. 2011;47:6245–7.CrossRefGoogle Scholar
  16. 16.
    Li Y-Y, Hu S-H, Xiao W, Wang H-Y, Luo X-H, Li C, Cheng S-X, Zhang X-Z, Zhuo R-X. Dual-vectors of anti-cancer drugs and genes based on pH-sensitive micelles self-assembled from hybrid polypeptide copolymers. J Mater Chem. 2011;21:3100–6.CrossRefGoogle Scholar
  17. 17.
    Chawla K, Lee S, Lee BP, Dalsin JL, Messersmith PB, Spencer ND. A novel low-friction surface for biomedical applications: modification of poly(dimethylsiloxane) (PDMS) with polyethylene glycol(PEG)-DOPA-lysine. J Biomed Mater Res A. 2009;90A:742–9.CrossRefGoogle Scholar
  18. 18.
    Kricheldorf HR. Polypeptides and 100 years of chemistry of alpha amino acid n-carboxyanhydrides. Angew Chem Int Ed. 2006;45:5752–84.CrossRefGoogle Scholar
  19. 19.
    Habraken GJM, Wilsens KHRM, Koning CE, Heise A. Optimization of n-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym Chem. 2011;2:1322–30.CrossRefGoogle Scholar
  20. 20.
    Thornton PD, Heise A. Bio-functionalisation to enzymatically control the solution properties of a self-supporting polymeric material. Chem Commun. 2011;47:3108–10.CrossRefGoogle Scholar
  21. 21.
    Zhu G-Q, Wang F-G, Liu Y-Y. Effects of reaction conditions on the grafting percentage of poly(ethylene glycol)-block-poly(g-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer. J Brazil Chem Soc. 2010;21:715–20.CrossRefGoogle Scholar
  22. 22.
    Hoek I, Tho F, Arnold WM. Sodium hydroxide treatment of PDMS based microfluidic devices. Lab Chip. 2010;10:2283–5.CrossRefGoogle Scholar
  23. 23.
    Wong I, Ho C-M. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid. 2009;7:291–306.CrossRefGoogle Scholar
  24. 24.
    Willcox MDP, Hume EBH, Aliwarga Y, Kumar N, Cole N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbio. 2008;105:1817–25.CrossRefGoogle Scholar
  25. 25.
    Tamai K, Kawate K, Kawahara I, Takakura Y, Sakaki K. Inorganic antimicrobial coating for titanium alloy and its effect on bacteria. J Orthop Sci. 2009;14:204–9.CrossRefGoogle Scholar
  26. 26.
    Bayston R, Fisher LE, Weber K. An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and Gram negative bacteria. Biomaterials. 2009;30:3167–73.CrossRefGoogle Scholar
  27. 27.
    Yamamoto Y, Hiraki J. Silicone-modified antimicrobial polymer, antimicrobial agent and antimicrobial resin composition. Patent # 7470753 B2, 2008.Google Scholar
  28. 28.
    Takehara M, Hibino A, Saimura M, Hirohara H. High-yield production of short chain length poly(ε-l-lysine) consisting of 5–20 residues by Streptomycesaureofaciens, and its antimicrobial activity. Biotechnol Lett. 2010;32:1299–303.CrossRefGoogle Scholar
  29. 29.
    Conte M, Aliberti F, Fucci L, Piscopo M. Antimicrobial activity of various cationic molecules on foodborne pathogens. World J Microb Biot. 2007;23:1679–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paul D. Thornton
    • 1
  • Ruairi Brannigan
    • 1
  • Joanna Podporska
    • 2
  • Brid Quilty
    • 3
  • Andreas Heise
    • 1
  1. 1.School of Chemical SciencesDublin City UniversityDublin 9Ireland
  2. 2.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland
  3. 3.School of BiotechnologyDublin City UniversityDublin 9Ireland

Personalised recommendations