Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 22, Issue 12, pp 2727–2734 | Cite as

Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity

  • Mirjam Lilja
  • Axel Genvad
  • Maria Åstrand
  • Maria Strømme
  • Håkan Enqvist
Article

Abstract

Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO2 has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO2 on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O2 gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

Keywords

Rutile Simulated Body Fluid Positive Bias TiO2 Thin Film Titanium Oxide Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhou W, Zhong X, Wu X, Yaun L, Shu Q, Xia Y, Ostrikov K. Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response. J Biomed Mater Res. 2007;81A:453–64.CrossRefGoogle Scholar
  2. 2.
    Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontol 2000. 2006;41:136–56.CrossRefGoogle Scholar
  3. 3.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.CrossRefGoogle Scholar
  4. 4.
    Jarcho M, Kay JL, Gumaer RH, Drobeck HP. Tissue, cellular and subcellular events at bone–ceramic hydroxyapatite interface. J Bioeng. 1977;1:79–92.Google Scholar
  5. 5.
    Kokubo T, Shigematsu S, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, et al. Apatite- and Wollastonite-containing glass–ceramics for prosthetic application. Bull Inst Chem Res. 1982;60:260–8.Google Scholar
  6. 6.
    Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.CrossRefGoogle Scholar
  7. 7.
    Kokubo T. Design of bioactive bone substitutes based on biomineralization process. Mater Sci Eng. 2005;C25:97–104.Google Scholar
  8. 8.
    Goto K, Tamura J, Shinzato S, Fujibayashi S. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;33:6496–505.CrossRefGoogle Scholar
  9. 9.
    Moore WR, Graves SE. Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354–61.CrossRefGoogle Scholar
  10. 10.
    Mihranyan A, Forsgren J, Strømme M, Engqvist H. Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Langmuir. 2009;25:1292–5.CrossRefGoogle Scholar
  11. 11.
    Zhou W, Zhong X, Wu X, Yaun L, Shu Q, Xia Y. Structural and optical properties of titanium oxide thin films deposited on unheated substrate at different total pressures by reactive magnetron Sputtering with a substrate bias. J Korean Phys Soc. 2006;49:2168–75.Google Scholar
  12. 12.
    Zhang Y, Ma X, Chen P, Yang D. Effect of the substrate temperature on the crystallization of TiO2 films prepared by DC reactive magnetron sputtering. J Cryst Growth. 2007;300:551–4.CrossRefGoogle Scholar
  13. 13.
    Svetina M, Colombi Ciacchi L, Sbaizero O, Meriani S, De Vita A. Deposition of Calcium ions on rutile (110): a first principles investigation. Acta Mater. 2001;49:2169–77.CrossRefGoogle Scholar
  14. 14.
    Keshmiri M. Apatite formation on TiO2 anatase microspheres. J Non-Cryst Solids. 2003;324:289–94.CrossRefGoogle Scholar
  15. 15.
    Piskounova S, Forsgren J, Brohede U, Engqvist H, Strømme M. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2. J Biomed Mater Res Part B Appl Biomater. 2009;91B:780–7.CrossRefGoogle Scholar
  16. 16.
    Åberg J, Brohede U, Mihranyan A, Strømme M, Engqvist H. Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations. J Mater Sci Mater Med. 2009;20:2053–61.CrossRefGoogle Scholar
  17. 17.
    Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Strømme M. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med. 2009;20:1859–67.CrossRefGoogle Scholar
  18. 18.
    Brohede U, Zhao S, Lindberg F, Mihranyan A, Forsgren J, Strømme M, Engqvist H. A novel graded bioactive coating on implant for enhanced fixation to bone. Appl Surf Sci. 2009;225:7723–8.CrossRefGoogle Scholar
  19. 19.
    Kokubo T, Matsushita T, Takadama H. Titania-based bioactive materials. J Eur Ceram Soc. 2007;27:1553–8.CrossRefGoogle Scholar
  20. 20.
    Kokubo T, Kim HM  , Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J. Mater. Sci; Mater. Med. 2004;15:99–107.Google Scholar
  21. 21.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  22. 22.
    Liu X, Zhao X, Fu R, Ho JPY, Ding C, Chu PK. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials. 2005;26:6143–50.CrossRefGoogle Scholar
  23. 23.
    Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. Magnetron co-sputtered silicon-containing hydroxyapatite thin films–an in vitro study. Biomaterials. 2005;26:2947–56.CrossRefGoogle Scholar
  24. 24.
    Bauer TW, Geesink RCT, Zimmerman R, McMahon JT, Bone J. Hydroxyapatite-coated femoral stems: histological analysis of components retrieved at autopsy. J Surg. 1991;73A:1439–52.Google Scholar
  25. 25.
    Collier JP, Surprenant VA, Mayor MB, Wrona M, Jensen RE, Surprenant HP. Loss of hydroxyapatite coating on retrieved, total hip components. J Arthroplast. 1993;8:389–92.CrossRefGoogle Scholar
  26. 26.
    LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.CrossRefGoogle Scholar
  27. 27.
    Hong Z, et al. Crystalline hydroxyapatite thin films produced at room temperature-An opposing radio frequency magnetron sputtering approach. Thin Solid Films. 2007;515:6773–80.CrossRefGoogle Scholar
  28. 28.
    Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;R47:49–121.Google Scholar
  29. 29.
    Yamagishi M, Kuriki S, Song PK, Shigesato Y. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films. 2003;442:227–31.CrossRefGoogle Scholar
  30. 30.
    Lukaszkowicz K, Dobrzański L. A. Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5–1 steel substrate. Mater Sci. 2008;43:3400–7.CrossRefGoogle Scholar
  31. 31.
    Qinnan Z, Baoshun L, Xiujian Z, et al. Effect of ratio of oxygen to argon and thermal treatment on the structure and hydrophilicity of TiO2 thin films coated on glass by DC reactive magnetron sputtering. Rare Met Mater Eng. 2003;32:339–43.Google Scholar
  32. 32.
    Liu B, Zhao X, Zhao Q, Li C, He X. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Mater Chem Phys. 2005;90:207–12.CrossRefGoogle Scholar
  33. 33.
    Miyagi T, Kamei M, Ogawa T, Mitsuhashi T, Yamazaki A, Sato T. Pulse mode effects on crystallization temperature of titanium dioxide films in pulse magnetron sputtering. Thin Solid Films. 2003;442:32–5.CrossRefGoogle Scholar
  34. 34.
    Zywitzki O, Modes T, Sahm H, Frach P, Goedicke K, Gloss D. Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering. Surf Coat Technol. 2004;180:538–43.CrossRefGoogle Scholar
  35. 35.
    Zywitzki O, Modes T, Frach P, Gloss D. Effect of structure and morphology on photocatalytic properties of TiO2 layers. Surf Coat Technol. 2008;202:2488–93.CrossRefGoogle Scholar
  36. 36.
    Kasemanankul P, et al. Low-temperature deposition of (1 1 0) and (1 0 1) rutile TiO2 thin films using dual cathode DC unbalanced magnetron sputtering for inducing hydroxyapatite. Mater Chem Phys. 2009;117:288–93.CrossRefGoogle Scholar
  37. 37.
    Murray JL, Wriedt HA. The O-Ti (Oxygen-Titanium) system. Bull Alloy Phase Diagrams. 1987;8(2):148–65.Google Scholar
  38. 38.
    Guerin D, Ismat Shah S. Reactive-sputtering of titanium oxide thin films. J Vac Sci Technol. 1997;15A:712–5.Google Scholar
  39. 39.
    Song PK, Irie Y, Shigesato Y. Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias. Thin Solid Films. 2006;496:121–5.CrossRefGoogle Scholar
  40. 40.
    Ohring M. Materials science of thin film: depositions and structure. 2nd ed. San Diego: Academic Press; 2002.Google Scholar
  41. 41.
    Lindahl C, Borchardt P, Lausmaa J, Xia W, Engqvist H. Studies of early growth mechanisms of hydroxyapatite on single crystalline rutile: a model system for bioactive surfaces. J Mater Sci Mater Med. 2010;21:2734–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division for Nanotechnology and Functional Materials, Department of Engineering SciencesThe Ångström Laboratory, Uppsala UniversityUppsalaSweden
  2. 2.Division of Applied Materials Science, Department of Engineering SciencesThe Ångström Laboratory, Uppsala UniversityUppsalaSweden
  3. 3.Sandvik Tooling Sverige ABStockholmSweden

Personalised recommendations