Journal of Materials Science: Materials in Medicine

, Volume 22, Issue 12, pp 2711–2720 | Cite as

Hard implant coatings with antimicrobial properties

  • Claus MosekeEmail author
  • Uwe Gbureck
  • Patrick Elter
  • Peter Drechsler
  • Andreas Zoll
  • Roger Thull
  • Andrea Ewald


Infection of orthopaedic implants often leads to inflammation immediately after surgery and increases patient morbidity due to repetitive operations. Silver ions have been shown to combine good biocompatibility with a low risk of inducing bacterial resistance. In this study a physical vapour deposition system using both arc deposition and magnetron sputtering has been utilized to produce silver ion doped TiN coatings on Ti substrates. This biphasic system combines the advantages of silver induced bactericidity with the good mechanical properties of TiN. Crystallographic analysis by X-ray diffraction showed that silver was deposited as well in its elementary form as it was incorporated into the crystal lattice of TiN, which resulted in increasing hardness of the TiN-coatings. Elution experiments revealed a continuous release of Ag ions in phosphate buffered saline. The coatings showed significant inhibitory effects on the growth of Staphylococcus epidermidis and Staphylococcus aureus and practically no cell-toxicity in cytocompatibility tests.


Magnetron Sputtering Silver Content Silver Concentration Bacteriostatic Effect Elementary Silver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Deutsche Forschungsgemeinschaft for their financial support (DFG Gb1/13-1) as well as the Fraunhofer-Institut für Silicatforschung (ISC, Würzburg, Germany) and Dr. Martin Kamp (Lehrstuhl für Technische Physik, Würzburg, Germany) for their experimental support.


  1. 1.
    Dewidar MM, Yoon HC, Lim JK. Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met Mater Int. 2006;12(3):193–206.CrossRefGoogle Scholar
  2. 2.
    Zitter H, Plenk HJ. The electrochemical behaviour of metallic implant materials as indicator of their biocompatibility. J Biomed Mater Res. 1987;21:881–96.CrossRefGoogle Scholar
  3. 3.
    Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res. 1979;13:217–50.CrossRefGoogle Scholar
  4. 4.
    Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.CrossRefGoogle Scholar
  5. 5.
    Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.CrossRefGoogle Scholar
  6. 6.
    Otto M. Klassifikation bei protheseninsuffizienz und partikelbestimmung. Der Pathologe. 2008;29(2):232–9.CrossRefGoogle Scholar
  7. 7.
    Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.CrossRefGoogle Scholar
  8. 8.
    Knobben BA, Engelsma Y, Neut D, vaan der Mei HC, Busscher HJ, van Horn JR. Intraoperative contamination influences wound discharge and periprosthetic infection. Clin Orthop Relat Res. 2006;452:236–41.CrossRefGoogle Scholar
  9. 9.
    Wodtke J, Lohr JF. The infected implant. Der Orthopäde. 2008;37:257–67.CrossRefGoogle Scholar
  10. 10.
    Ruchholtz S, Täger G, Nast-Kolb D. Die infizierte hüftgelenksprothese. DerUnfallchirurg. 2004;107(4):307–19.CrossRefGoogle Scholar
  11. 11.
    Kennedy JF, Humphreys JD. Active immobilized antibiotics based on metal hydroxides. Antimicrob Agents Chemother. 1976;9:766–70.Google Scholar
  12. 12.
    Legeay G, Poncin-Epaillard F, Arciola CR. New surfaces with hydrophilic/hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs. 2006;29:453–61.Google Scholar
  13. 13.
    Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22–31.CrossRefGoogle Scholar
  14. 14.
    Colon G, Ward BC, Webster TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A. 2006;78:595–604.Google Scholar
  15. 15.
    Engelsman AF, Krom BP, Busscher HJ, van Dam GM, Ploeg RJ, van der Mei HC. Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater. 2009;5(6):1905–10.CrossRefGoogle Scholar
  16. 16.
    Norowski PA, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis. Biomater. 2009;88B:530–43.CrossRefGoogle Scholar
  17. 17.
    Gold HS, Moellering RC Jr. Antimicrobial-drug resistance. N Engl J Med. 1996;335(19):1445–53.CrossRefGoogle Scholar
  18. 18.
    Gransden WR. Antibiotic resistance. Nosocomial gram-negative infection. J Med Microbiol. 1997;46(6):436–9.CrossRefGoogle Scholar
  19. 19.
    Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams DF. The biocompatibility of silver. Crit Rev Biocompat. 1989;5:221–3.Google Scholar
  20. 20.
    Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–53.CrossRefGoogle Scholar
  21. 21.
    Schierholz JM, Lucas LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. J Hosp Infect. 1998;40:257–62.CrossRefGoogle Scholar
  22. 22.
    Roy M, Bandyopadhyay A, Bose S. In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Mat Sci Eng. 2009;C29:1965–8.Google Scholar
  23. 23.
    Das K, Bose S, Bandyopadhyay A, Karandikar B, Gibbins BL. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res. 2008;87B:455–60.CrossRefGoogle Scholar
  24. 24.
    Cook G, Costerton JW, Darouiche RO. Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff. Int J Antimicro Ag. 2000;13:169–73.CrossRefGoogle Scholar
  25. 25.
    Yorganci K, Krepel C, Weigelt JA, Edmiston CE. Activity of antibacterial impregnated central venous catheters against Klebsiella pneumoniae. Int Care Med. 2002;28:438–42.CrossRefGoogle Scholar
  26. 26.
    Bechert T, Böswald M, Lugauer S, Regenfus A, Greil J, Guggenbichler JP. The Erlanger silver catheter: in vitro results for antimicrobial activity. Infection. 1999;27(Suppl. 1):24–9.CrossRefGoogle Scholar
  27. 27.
    Jehn HA, Baumgärtner ME. Corrosion studies with hard coating-substrate systems. Surf Coat Tech. 1992;54(/55):108–14.Google Scholar
  28. 28.
    Griepentrog M, Mackrodt B, Mark G, Linz T. Properties of TiN hard coatings prepared by unbalanced magnetron sputtering and cathodic arc deposition using a uni- and bipolar pulsed bias voltage. Surf Coat Tech. 1994;74(/75):326–32.Google Scholar
  29. 29.
    Paschoal AL, Vanâncio EC, de Campos Franceschini Canale L, da Silva OL, Huerta-Vilca D, de Jesus Motheo A. Metallic biomaterials TiN-coated: corrosion analysis and biocompatibility. Artif Org. 2003;27(5):461–4.CrossRefGoogle Scholar
  30. 30.
    Zhao J, Li L, Li D, Gu H. A study on biocompatibility of TiN thin films deposited by dual-energy ion beam assisted deposition. J Adh Sci Tech. 2004;18(9):1003–10.CrossRefGoogle Scholar
  31. 31.
    Olbricha W, Kampschulte G. Superimposed pulse bias voltage used in arc and sputter technology. Surf Coat Tech. 1993;59(1–3):274–80.CrossRefGoogle Scholar
  32. 32.
    Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mat Res. 1992;7:1564–83.CrossRefGoogle Scholar
  33. 33.
    Saha D, Bal M. Transformation and expression of a staphylococcal plasmid in Escherichia coli. FEMSLE. 1993;109:279–82.CrossRefGoogle Scholar
  34. 34.
    Bliz H, Gliss B, Hanke W. Theory of Phonons in Ionic Crystals, Review Article, In: Horton GK, Maradudin AA (eds) Dynamical Properties of Solids, vol 1. North-Holland; 1974. p. 343.Google Scholar
  35. 35.
    Fischer K, Bilz H, Haberkorn R, Weber W. Covalency and deformability of Ag+-ions in the lattice dynamics of silver halides. Phys Stat Sol. 1972;54:285–94.CrossRefGoogle Scholar
  36. 36.
    Travitzky NA, Zhitomirsky VN. Hardness of titanium nitride coatings fabricated by vacuum arc deposition. J Mat Sci Let. 1996;15:1818–20.CrossRefGoogle Scholar
  37. 37.
    Hsieh JH, Tseng CC, Chang YK, Chang SY, Wu W. Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing. Surf Coat Tech. 2008;202:5586–9.CrossRefGoogle Scholar
  38. 38.
    Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8.CrossRefGoogle Scholar
  39. 39.
    Zhang Q, Sun C, Zhao Y, Zhou S, Hu X, Chen P. Low Ag-doped titanium dioxide nanosheet films with outstanding antimicrobial property. Environ Sci Technol. 2010;44(21):8270–5.CrossRefGoogle Scholar
  40. 40.
    Zhao J, Cai XM, Tang HQ, Liu T, Gu HQ, Cui RZ. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition. J Mater Sci Mater Med. 2009;20:101–5.CrossRefGoogle Scholar
  41. 41.
    Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;26:5547–56.CrossRefGoogle Scholar
  42. 42.
    Zhao L, Chu PK, Zhang Y, Wu Z. Review—antibacterial coatings on titanium implants. J Biomed Mater Res. 2009;91B:470–80.CrossRefGoogle Scholar
  43. 43.
    Subramanian B, Ananthakumar R, Jayachandran M. Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium-aluminum-nitride films for bioimplants. Vacuum 85:601–609. 7th international symposium on applied plasma science, Hamburg, 2009.Google Scholar
  44. 44.
    Zhao J, Feng HJ, Tang HQ, Zheng JH. Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel. Surf Coat Technol. 2007;201:5676–9.CrossRefGoogle Scholar
  45. 45.
    Oliveira C, Galindo RE, Palacio C, Calderon S, Almeida BG, Henriques M, Espinosa A, Carvalho S. Surface characterization of Ti–Si–C–ON coatings for orthopedic devices: XPS and raman spectroscopy. Solid State Sci. 2011;13:95–100.CrossRefGoogle Scholar
  46. 46.
    Kelly PJ, Li H, Whitehead KA, Verran J, Arnell RD, Iordanova I. A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings. Surf Coat Technol. 2009;204:1137–40.CrossRefGoogle Scholar
  47. 47.
    Iordanova I, Kelly PJ, Antonov V, Li H. Influence of concentration of Ag on electron and crystallographic structure of reactively co-sputtered CFUBMS TiN/Ag nanocomposite coatings. Mater Technol. 2011;26:40–5.Google Scholar
  48. 48.
    Köstenbauer H, Fontalvo GA, Keckes J, Mitterer C. Intrinsic stresses and stress relaxation in TiN/Ag multilayer coatings during thermal cycling. Thin Solid Films. 2007;516:1920–4.CrossRefGoogle Scholar
  49. 49.
    De los Arcos T, Oelhafen P, Aebi U, Hefti A, Düggelin M, Mathys D, Guggenheim R. Preparation and characterization of TiN–Ag nanocomposite films. Vacuum. 2002;67:463–70.CrossRefGoogle Scholar
  50. 50.
    Hsieh JH, Chang CC, Chang YK, Cherng JS. Photocatalytic and antibacterial properties of TaON–Ag nanocomposite thin films. Thin Solid Films. 2010;518:7263–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Claus Moseke
    • 1
    Email author
  • Uwe Gbureck
    • 1
  • Patrick Elter
    • 1
  • Peter Drechsler
    • 1
  • Andreas Zoll
    • 1
  • Roger Thull
    • 1
  • Andrea Ewald
    • 1
  1. 1.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany

Personalised recommendations