Advertisement

The effect of bone ingrowth depth on the tensile and shear strength of the implant–bone e-beam produced interface

  • M. TaralaEmail author
  • D. Waanders
  • J. E. Biemond
  • G. Hannink
  • D. Janssen
  • P. Buma
  • N. Verdonschot
Article

Abstract

New technologies, such as selective electron beam melting, allow to create complex interface structures to enhance bone ingrowth in cementless implants. The efficacy of such structures can be tested in animal experiments. Although animal studies provide insight into the biological response of new structures, it remains unclear how ingrowth depth is related to interface strength. Theoretically, there could be a threshold of ingrowth, above which the interface strength does not further increase. To test the relationship between depth and strength we performed a finite element study on micro models with simulated uncoated and hydroxyapatite (HA) coated surfaces. We examined whether complete ingrowth is necessary to obtain a maximal interface strength. An increase in bone ingrowth depth did not always enhance the bone–implant interface strength. For the uncoated specimens a plateau was reached at 1,500 μm of ingrowth depth. For the specimens with a simulated HA coating, a bone ingrowth depth of 500 μm already yielded a substantial interface strength, and deeper ingrowth did not enhance the interface strength considerably. These findings may assist in optimizing interface morphology (its depth) and in judging the effect of bone ingrowth depth on interface strength.

Keywords

Shear Strength Interface Strength Bone Ingrowth Finite Element Method Model Coated Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was partly sponsored by Eurocoating SpA (Trento, Italy) and “Provincia Autonoma di Trento” under the project called “E-Ortho”. The authors would like to thank Pierfrancesco Robotti and Emanuele Magalini (Eurocoating, Trento, Italy), who actively participated in this study and provided the CT scan of the EBM produced structures.

References

  1. 1.
    Brentel AS, de Vasconcellos LM, Oliveira MV, Graca ML, de Vasconcellos LG, Cairo CA, Carvalho YR. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. J Appl Oral Sci. 2006;14:213–8.CrossRefGoogle Scholar
  2. 2.
    Frosch KH, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Sturmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A. 2004;68:325–34.CrossRefGoogle Scholar
  3. 3.
    Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res. 2000;52:491–9.CrossRefGoogle Scholar
  4. 4.
    Vasconcellos LM, Oliveira MV, Graca ML, Vasconcellos LG, Cairo CA, Carvalho YR. Design of dental implants, influence on the osteogenesis and fixation. J Mater Sci Mater Med. 2008;19:2851–7.CrossRefGoogle Scholar
  5. 5.
    Kujala S, Ryhanen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials. 2003;24:4691–7.CrossRefGoogle Scholar
  6. 6.
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4:433–56.CrossRefGoogle Scholar
  7. 7.
    Itala AI, Ylanen HO, Ekholm C, Karlsson KH, Aro HT. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits. J Biomed Mater Res. 2001;58:679–83.CrossRefGoogle Scholar
  8. 8.
    Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplast. 1999;14:355–68.CrossRefGoogle Scholar
  9. 9.
    Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8:162–73.CrossRefGoogle Scholar
  10. 10.
    Zhang E, Zou C. Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: characterization and in vivo evaluation. Acta Biomater. 2009;5:1732–41.CrossRefGoogle Scholar
  11. 11.
    Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R. The effect of sol–gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials. 2004;25:865–76.CrossRefGoogle Scholar
  12. 12.
    Wazen RM, Lefebvre LP, Baril E, Nanci A. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater. 2010;94:64–71.Google Scholar
  13. 13.
    Soballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, Hvid I, Bunger C. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res. 1991;272:300–307.Google Scholar
  14. 14.
    Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxillofac Surg. 2009;67:1706–15.CrossRefGoogle Scholar
  15. 15.
    Heinl P, Muller L, Korner C, Singer RF, Muller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536–44.CrossRefGoogle Scholar
  16. 16.
    Li JP, Habibovic P, van den DM, Wilson CE, De W Jr, van Blitterswijk CA, de GK. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. 2007;28:2810–20.CrossRefGoogle Scholar
  17. 17.
    Biemond JE, Hannink G, Jurrius A, Verdonschot N, Buma P. In vivo assessment of bone ingrowth potential of 3-dimensional E-beam produced implant surfaces and the effect of additional treatment by acid-etching and hydroxyapatite coating. J Biomater Appl. 2010;95(1):131–140.Google Scholar
  18. 18.
    Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45:75–83.CrossRefGoogle Scholar
  19. 19.
    Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81:907–14.CrossRefGoogle Scholar
  20. 20.
    Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22:445–54.CrossRefGoogle Scholar
  21. 21.
    Waanders D, Janssen D, Mann KA, Verdonschot N. The mechanical effects of different levels of cement penetration at the cement–bone interface. J Biomech. 2010;43:1167–75.CrossRefGoogle Scholar
  22. 22.
    Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26:111–9.CrossRefGoogle Scholar
  23. 23.
    Stolk J, Verdonschot N, Murphy BP, Prendergast PJ, Huiskes R. Finite element simulation of anisotropic damage accumulation and creep in acrylic bone cement. Eng Fract Mech. 2004;71:513–28.CrossRefGoogle Scholar
  24. 24.
    Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 2005;437:219–228.Google Scholar
  25. 25.
    Rancourt D, Shirazi-Adl A, Drouin G, Paiement G. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res. 1990;24:1503–19.CrossRefGoogle Scholar
  26. 26.
    Janssen D, Mann KA, Verdonschot N. Micro-mechanical modeling of the cement–bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech. 2008;41:3158–63.CrossRefGoogle Scholar
  27. 27.
    Lin H, Xu H, Zhang X, de GK. Tensile tests of interface between bone and plasma-sprayed HA coating-titanium implant. J Biomed Mater Res. 1998;43:113–22.CrossRefGoogle Scholar
  28. 28.
    Probster L, Voigt C, Fuhrmann G, Gross UM. Tensile and torsional shear-strength of the bone implant interface of titanium implants in the rabbit. J Mater Sci Mater Med. 1994;5:314–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Tarala
    • 1
    Email author
  • D. Waanders
    • 1
  • J. E. Biemond
    • 1
  • G. Hannink
    • 1
  • D. Janssen
    • 1
  • P. Buma
    • 1
  • N. Verdonschot
    • 1
    • 2
  1. 1.Orthopaedic Research LaboratoryRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Laboratory for Biomechanical EngineeringUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations