Morphological and functional behaviors of rat hepatocytes cultured on single-walled carbon nanotubes

  • Haruka Koga
  • Tsuyohiko Fujigaya
  • Naotoshi Nakashima
  • Kohji Nakazawa
Article

Abstract

This study describes the morphological and functional behaviors of rat hepatocytes on single-walled carbon nanotube (CNT)-coated surfaces. Although the hydrophobic characteristics of CNT-coated surfaces increased with increasing CNT density, hepatocyte adhesion decreased, indicating that the interaction between hepatocytes and CNTs is weak. We found that hepatocytes on a CNT-coated surface gradually gather together and form spheroids (spherical multicellular aggregates). These spheroids exhibit compact spherical morphology with a smooth surface and express connexin-32, an intracellular communication molecule. In contrast, collagen treatment in conjunction with the CNT-coated surface improved hepatocyte adhesion, and the cells maintained a monolayer configuration throughout the culture period. The albumin secretion and ammonia removal activities of hepatocyte spheroids were maintained at elevated levels for at least 15 days of culturing as compared with hepatocyte monolayers. These results indicate that CNTs can be used for the formation and long-term culture of hepatocyte spheroids.

References

  1. 1.
    Dresselhaus MS, Dresselhaus G, Jorio A. Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res. 2004;34:247–78.CrossRefGoogle Scholar
  2. 2.
    Ouyang M, Huang JL, Lieber CM. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res. 2002;35:1018–25.CrossRefGoogle Scholar
  3. 3.
    Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res. 2002;35:1035–44.CrossRefGoogle Scholar
  4. 4.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc Chem Res. 2002;35:1105–13.CrossRefGoogle Scholar
  5. 5.
    Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 2004;4:507–11.CrossRefGoogle Scholar
  6. 6.
    Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 2007;7:1123–8.CrossRefGoogle Scholar
  7. 7.
    Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA, Baughman RH, Romero MI. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed. 2007;18:1245–61.CrossRefGoogle Scholar
  8. 8.
    Shi X, Sitharamana B, Pham QP, Liang F, Wu K, Billups WE, Wilson LJ, Mikos AG. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials. 2007;28:4078–90.CrossRefGoogle Scholar
  9. 9.
    Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6:562–7.CrossRefGoogle Scholar
  10. 10.
    Chlopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Beguin F. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006;44:1106–11.CrossRefGoogle Scholar
  11. 11.
    Edwards SL, Church JS, Werkmeister JA, Ramshaw JAM. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials. 2009;30:1725–31.CrossRefGoogle Scholar
  12. 12.
    Takahashi K, Shizume R, Uchida K, Yajima H. Improved blood biocompatibility of composite film of chitosan/carbon nanotubes complex. J Biorheol. 2009;23:64–71.CrossRefGoogle Scholar
  13. 13.
    MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A. 2005;74:486–96.Google Scholar
  14. 14.
    Tanaka M, Nishikawa K, Okubo H, Kamachi H, Kawai T, Matsushita T, Shimomura M. Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film. Colloids Surf Physicochem Eng Asp. 2006;284–285:464–9.CrossRefGoogle Scholar
  15. 15.
    Chu XH, Shi XL, Feng ZO, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett. 2009;31:347–52.CrossRefGoogle Scholar
  16. 16.
    Feng ZO, Chu XH, Huang NP, Leach MK, Wang G, Wang YC, Ding YT, Gu ZZ. Rat hepatocyte aggregate formation on discrete aligned nanofibers of type-I collagen-coated poly(l-lactic acid). Biomaterials. 2010;31:3604–12.CrossRefGoogle Scholar
  17. 17.
    Yamaguchi T, Sakai S, Watanabe R, Tarao T, Kawakami K. Heat treatment of electrospun silicate fiber substrates enhances cellular adhesion and proliferation. J Biosci Bioeng. 2010;109:304–6.CrossRefGoogle Scholar
  18. 18.
    Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83.CrossRefGoogle Scholar
  19. 19.
    Nakazawa K, Izumi Y, Fukuda J, Yasuda T. Hepatocyte spheroid culture on a poly-dimethylsiloxane chip having microcavities. J Biomater Sci Polym Ed. 2006;17:859–73.CrossRefGoogle Scholar
  20. 20.
    Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushita H, Takenami T, Shinji T, Mori M, Tsuji T. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res. 1990;186:227–35.CrossRefGoogle Scholar
  21. 21.
    Nakazawa K, Izumi Y, Mori R. Morphological and functional studies of rat hepatocytes on a hydrophobic or hydrophilic polydimethylsiloxane surface. Acta Biomater. 2009;5:613–20.CrossRefGoogle Scholar
  22. 22.
    Catapano G, Lorenzo MCD, Volpe CD, Bartoro L, Migliaresi C. Polymeric membranes for hybrid liver support devices: the effect of membrane surface wettability on hepatocyte viability and functions. J Biomater Sci Polym Ed. 1996;11:1017–27.CrossRefGoogle Scholar
  23. 23.
    Krasteva N, Groth TH, Fey-Lamprecht F, Altankov G. The role of surface wettability on hepatocyte adhesive interactions and function. J Biomater Sci Polym Ed. 2001;12:613–27.CrossRefGoogle Scholar
  24. 24.
    Grant MH, Morgan C, Henderson C, Malsch G, Seifert B, Albrecht W, Groth T. The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices. J Biomed Mater Res A. 2005;73:367–75.Google Scholar
  25. 25.
    Hasebe Y, Akao M, Okumura N, Izumi T, Koh T, Seki T, Ariga T. Plasminogen activator/plasmin system regulates formation of the hepatocyte spheroids. Biochem Biophys Res Commun. 2003;308:852–7.CrossRefGoogle Scholar
  26. 26.
    Hasebe Y, Okumura N, Koh T, Kazama H, Watanabe G, Seki T, Ariga T. Formation of rat hepatocyte spheroids on agarose. Hepatol Res. 2005;32:89–95.CrossRefGoogle Scholar
  27. 27.
    Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorfer P, Romanin C, Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–806.CrossRefGoogle Scholar
  28. 28.
    Liliensiek SJ, Wood JA, Yong J, Auerbach R, Nealey PF, Murphy CJ. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials. 2010;31:5418–26.CrossRefGoogle Scholar
  29. 29.
    Hou DX, Arimura M, Fukuda M, Oka T, Fujii M. Expression of cell adhesion molecule and albumin genes in primary culture of rat hepatocytes. Cell Biol Int. 2001;25:239–44.CrossRefGoogle Scholar
  30. 30.
    Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett. 1991;57:131–5.CrossRefGoogle Scholar
  31. 31.
    Fukuda J, Sakai Y, Nakazawa K. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials. 2006;27:1061–70.CrossRefGoogle Scholar
  32. 32.
    Vinken M, Henkens T, Rop ED, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology. 2008;47:1077–88.CrossRefGoogle Scholar
  33. 33.
    Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro. 2006;20:1202–12.CrossRefGoogle Scholar
  34. 34.
    Rotoli BM, Bussolati O, Bianchi MG, Barilli A, Balasubramanian C, Bellucci S, Bergamaschi E. Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett. 2008;178:95–102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Haruka Koga
    • 1
  • Tsuyohiko Fujigaya
    • 2
  • Naotoshi Nakashima
    • 2
    • 3
  • Kohji Nakazawa
    • 1
    • 3
  1. 1.Department of Life and Environment EngineeringThe University of KitakyushuKitakyushuJapan
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringKyushu UniversityFukuokaJapan
  3. 3.JST-CRESTTokyoJapan

Personalised recommendations