Advertisement

Oxygen consumption, acidification and migration capacity of human primary osteoblasts within a three-dimensional tantalum scaffold

  • Anika Jonitz
  • Katrin Lochner
  • Tobias Lindner
  • Doris Hansmann
  • Annika Marrot
  • Rainer Bader
Article

Abstract

A major clinical problem within synthetic, large-scaled scaffolds is the insufficient nutrient supply resulting in inhomogeneous cell proliferation and differentiation. The aim of this study was to analyse pH value, oxygen consumption and migration of human osteoblasts within a 3D tantalum scaffold, clinically used for larger bone defects. After 24 h the oxygen concentration within the scaffold decreased significantly and remained low during incubation. Monitoring of the pH value inside the tantalum scaffold showed a slightly acidification under static culture conditions. However, cell migration within the 3D scaffold was detected. Hence, in clinical application it can be assumed that porous tantalum scaffolds can be settled by osteoblasts under critical oxygen and nutrient supply. In general, monitoring of cell migration, oxygen consumption and acidification can be a suitable instrument for creating advanced 3D bone scaffolds.

Keywords

Tantalum Human Osteoblast Large Bone Defect High Oxygen Consumption Trabecular Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully thank the European Union and the Ministry of Economic Affairs, Employment and Tourism of Mecklenburg-Vorpommern for financial support within the project “Tissue Regeneration”, sub-project “BONET”. We acknowledge Ms. Ricarda Niendorf for her technical support.

Conflict of interest

None.

References

  1. 1.
    Hubble MJ. Bone grafts. Surg Technol Int. 2002;10:261–5.Google Scholar
  2. 2.
    Menze M. The bone graft and bone substitute market—aint nothing like the real thing? Review and analysis of trends and revenues in the bone graft market. PearlDiver Inc 2008.Google Scholar
  3. 3.
    Rueger JM. Bone substitution materials current status and prospects. Orthopade. 1998;27:72–9.Google Scholar
  4. 4.
    Schieker M, Mutschler W. Bridging posttraumatic bony defects. Established and new methods. Unfallchirurg. 2006;109:715–32.CrossRefGoogle Scholar
  5. 5.
    Schieker M, Seitz S, Gulkan H, Nentwich M, Horvath G, Regauer M, Milz S, Mutschler W. Tissue engineering of bone Integration and migration of human mesenchymal stem cells in colonized contructs in a murine model. Orthopade. 2004;33:1354–60.CrossRefGoogle Scholar
  6. 6.
    Grob D. Problems at the donor site in autologous bone transplantation. Unfallchirurg. 1986;89:339–45.Google Scholar
  7. 7.
    Lee YM, Seol YJ, Lim YT, Kim S, Han SB, Rhyu IC, Baek SH, Heo SJ, Choi JY, Klokkevold PR, Chung CP. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J Biomed Mater Res. 2001;54:216–23.CrossRefGoogle Scholar
  8. 8.
    Naal FD, Steinhauser E, Schauwecker J, Diehl P, Mittelmeier W. Tissue engineering von knochen- und knorpelgewebe: die bedeutung von sauerstoff und hypoxie. Biomaterialien. 2004;5:34–7.CrossRefGoogle Scholar
  9. 9.
    Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng. 2004;86:9–18.CrossRefGoogle Scholar
  10. 10.
    Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13:2153–62.CrossRefGoogle Scholar
  11. 11.
    Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A. 2008;14:1331–40.CrossRefGoogle Scholar
  12. 12.
    Villarruel SM, Boehm CA, Pennington M, Bryan JA, Powell KA, Muschler GF. The effect of oxygen tension on the in vitro assay of human osteoblastic connective tissue progenitor cells. J Orthop Res. 2008;26:1390–7.CrossRefGoogle Scholar
  13. 13.
    Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res. 2006;312:1693–702.CrossRefGoogle Scholar
  14. 14.
    Arnett TR. Acidosis, hypoxia and bone. Arch Biochem Biophys. 2010;503:103–9.CrossRefGoogle Scholar
  15. 15.
    Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86-A:1541–58.Google Scholar
  16. 16.
    Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27:4671–81.CrossRefGoogle Scholar
  17. 17.
    Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ). 2002;31:216–7.Google Scholar
  18. 18.
    Christie MJ. Clinical applications of trabecular metal. Am J Orthop (Belle Mead NJ). 2002;31:219–20.Google Scholar
  19. 19.
    Welldon KJ, Atkins GJ, Howie DW, Findlay DM. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype. J Biomed Mater Res A. 2008;84:691–701.Google Scholar
  20. 20.
    Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplast. 1999;14(3):347–54.CrossRefGoogle Scholar
  21. 21.
    Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater. 2005;73:315–24.Google Scholar
  22. 22.
    Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.CrossRefGoogle Scholar
  23. 23.
    Lee CM, Genetos DC, You Z, Yellowley CE. Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol. 2007;212:182–8.CrossRefGoogle Scholar
  24. 24.
    Kellner K, Liebsch G, Klimant I, Wolfbeis OS, Blunk T, Schulz MB, Gopferich A. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng. 2002;80:73–83.CrossRefGoogle Scholar
  25. 25.
    Rudert M, Wirth CJ. Knorpelregeneration und knorpelersatz. Orthopäde. 1998;27:309–21.CrossRefGoogle Scholar
  26. 26.
    Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res. 2001;99:147–55.CrossRefGoogle Scholar
  27. 27.
    Frick KK, Jiang L, Bushinsky DA. Acute metabolic acidosis inhibits the induction of osteoblastic egr-1 and type 1 collagen. Am J Physiol. 1997;272:C1450–6.Google Scholar
  28. 28.
    Brandao-Burch A, Utting JC, Orriss IR, Arnett TR. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int. 2005;77:167–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anika Jonitz
    • 1
  • Katrin Lochner
    • 1
  • Tobias Lindner
    • 1
  • Doris Hansmann
    • 1
  • Annika Marrot
    • 1
  • Rainer Bader
    • 1
  1. 1.Department of Orthopaedics, Biomechanics and Implant Technology Research LaboratoryUniversity of RostockRostockGermany

Personalised recommendations