Advertisement

Bacterial adherence on UHMWPE with vitamin E: an in vitro study

  • E. Gómez-Barrena
  • J. Esteban
  • D. Molina-Manso
  • H. Adames
  • M. J. Martínez-Morlanes
  • A. Terriza
  • F. Yubero
  • J. A. Puértolas
Article

Abstract

Orthopaedic materials may improve its capacity to resist bacterial adherence, and subsequent infection. Our aim was to test the bacterial adherence to alpha-tocopherol (frequently named vitamin E, VE) doped or blended UHMWPE with S. aureus and S. epidermidis, compared to virgin material. Collection strains and clinical strains isolated from patients with orthopaedic infections were used, with the biofilm-developing ability as a covariable. While collection strains showed significantly less adherence to VE-UHMWPE, some clinical strains failed to confirm this effect, leading to the conclusion that VE doped or blended UHMWPE affects the adherence of some S. epidermidis and S. aureus strains, independently of the concentration in use, but the results showed important intraspecies differences and cannot be generalized.

Keywords

UHMWPE Bacterial Adherence Clinical Strain Prosthetic Joint Infection Total Joint Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work is funded by the Spanish Ministry of Education (grant MAT2006-12603-CO2-O2), Comunidad de Madrid (grants S-0505/MAT0324, S2009/MAT-1472), and Ministry of Science (grant CONSOLIDER-INGENIO 2010 CSD 2008-0023 FUNCOAT). DMM was granted by Fundación Conchita Rábago de Jiménez Díaz. The authors thank Dr. J.J. Granizo, epidemiologist, for his help with statistical analysis.

References

  1. 1.
    Petty W, Spanier S, Shuster JJ, Silverthorne C. The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Joint Surg Am. 1985;67(8):1236–44.Google Scholar
  2. 2.
    Canadian Institute for Health Information. Hip and Knee Replacements in Canada—Canadian Joint Replacement Registry (CJRR) 2008–2009 Annual Report. Ottawa, Ont.: CIHI; 2009.Google Scholar
  3. 3.
    Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.CrossRefGoogle Scholar
  4. 4.
    Parth M, Aust N, Lederer K. Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants. J Mater Sci Mater Med. 2002;13(10):917–21.CrossRefGoogle Scholar
  5. 5.
    Wolf C, Krivec T, Blassnig J, Lederer K, Schneider W. Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J Mater Sci Mater Med. 2002;13(2):185–9.CrossRefGoogle Scholar
  6. 6.
    Oral E, Greenbaum ES, Malhi AS, Harris WH, Muratoglu OK. Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials. 2005;26(33):6657–63.CrossRefGoogle Scholar
  7. 7.
    Shibata N, Tomita N, Onmori N, Kato K, Ikeuchi K. Defect initiation at subsurface grain boundary as a precursor of delamination in ultrahigh molecular weight polyethylene. J Biomed Mater Res A. 2003;67(1):276–84.CrossRefGoogle Scholar
  8. 8.
    Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25(24):5515–22.CrossRefGoogle Scholar
  9. 9.
    Oral E, Malhi AS, Muratoglu OK. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials. 2006;27(6):917–25.CrossRefGoogle Scholar
  10. 10.
    Kinnari TJ, Esteban J, Zamora N, Fernandez R, Lopez-Santos C, Yubero F, et al. Effect of surface roughness and sterilization on bacterial adherence to ultra-high molecular weight polyethylene. Clin Microbiol Infect. 2010;16:1036–41.Google Scholar
  11. 11.
    Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev. 2005;205:269–84.CrossRefGoogle Scholar
  12. 12.
    Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4(3):327–47.CrossRefGoogle Scholar
  13. 13.
    Owens D, Wendt R. Estimation of surface free energy of polymers. J Appl Polymer Sci. 1969;13:1741–7.CrossRefGoogle Scholar
  14. 14.
    Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, et al. SarA and not sigma B is essential for biofilm development by Staphylococcus aureus. Mol Microbiol. 2003;48(4):1075–87.CrossRefGoogle Scholar
  15. 15.
    Esteban J, Gomez-Barrena E, Cordero J, Martin-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol. 2008;46(2):488–92.CrossRefGoogle Scholar
  16. 16.
    Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 2007;115(8):891–9.CrossRefGoogle Scholar
  17. 17.
    López-Santos M, Yubero F, Espinós J, González-Elipe A. Non-destructive depth compositional profiles by XPS peak-shape analysis. Anal Bioanal Chem. 2010;396:2757–68.CrossRefGoogle Scholar
  18. 18.
    Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:37–57.Google Scholar
  19. 19.
    An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43(3):338–48.CrossRefGoogle Scholar
  20. 20.
    Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7(1):55–71.CrossRefGoogle Scholar
  21. 21.
    Fischer B, Vaudaux P, Magnin M, el Mestikawy Y, Proctor RA, Lew DP, et al. Novel animal model for studying the molecular mechanisms of bacterial adhesion to bone-implanted metallic devices: role of fibronectin in Staphylococcus aureus adhesion. J Orthop Res. 1996;14(6):914–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Gómez-Barrena
    • 1
    • 2
    • 7
  • J. Esteban
    • 3
  • D. Molina-Manso
    • 3
  • H. Adames
    • 3
  • M. J. Martínez-Morlanes
    • 4
  • A. Terriza
    • 5
  • F. Yubero
    • 5
  • J. A. Puértolas
    • 4
    • 6
  1. 1.Department of Orthopaedic SurgeryHospital La PazMadridSpain
  2. 2.Autónoma University of MadridMadridSpain
  3. 3.IIS-FJD, Department of MicrobiologyMadridSpain
  4. 4.Department of Material Science and Technology, EINA-I3AZaragoza UniversityZaragozaSpain
  5. 5.Instituto Ciencia de Materiales de Sevilla, ICMSESeville University-CSICSevilleSpain
  6. 6.Instituto Ciencia de Materiales de Aragón, ICMAZaragoza University-CSICZaragozaSpain
  7. 7.Serv Cirugía Ortopédica y Traumatología A, Facultad de MedicinaMadridSpain

Personalised recommendations