Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells

  • Yu. A. Petrenko
  • R. V. Ivanov
  • A. Yu. Petrenko
  • V. I. Lozinsky


We have developed a novel wide-pore scaffold for cell 3D culturing, based on the technology of freeze-drying of Ca-alginate and gelatin. Two different preparation methodologies were compared: (i) freeze-drying of Na-alginate + gelatin mixed solution followed by the incubation of dried polymer in saturated ethanolic solution of CaCl2; (ii) freeze-drying of the Na-alginate solution followed by the chemical “activation” of polysaccharide core with divinylsulfone with subsequent gelatin covalent attachment to the inner surfaces of pore walls. The scaffolds produced using the first approach did not provide adhesion and proliferation of human bone marrow mesenchymal stromal cells (MSCs). Conversely, the second approach allowed to obtain scaffolds with a high adherence ability for the cells. When cultured within the latter type of scaffold, MSCs proliferated and were able to differentiate into adipogenic, osteogenic and chondrogenic cell lineages, in response to specific induction stimuli. The results indicate that Ca-alginate wide-pore scaffolds with covalently attached gelatin could be useful for stem cell-based bone, cartilage and adipose tissue engineering.


Alginate Gelatin Mesenchymal Stromal Cell Human Bone Marrow Chondrogenic Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by cooperative grant of Russian Fund of Fundamental Research and State Fund of Fundamental Research of Ukraine #09-04-90403-Ukr_f_a. Authors thank Dr. Andrei Tarasov (Imperial College London) for helpful discussion.


  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.CrossRefGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  3. 3.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefGoogle Scholar
  4. 4.
    Gomillion CT, Burg KJ. Stem cells and adipose tissue engineering. Biomaterials. 2006;27:6052–63.CrossRefGoogle Scholar
  5. 5.
    Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60:243–62.CrossRefGoogle Scholar
  6. 6.
    Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J Tissue Eng Regen Med. 2007;1:417–24.CrossRefGoogle Scholar
  7. 7.
    Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. J Tissue Eng Regen Med. 2009;3:54–62.CrossRefGoogle Scholar
  8. 8.
    Shoichet MS. Polymer scaffolds for biomaterials applications. Macromolecules. 2010;43:581–91.CrossRefGoogle Scholar
  9. 9.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP. Preparation and characterization of poly(lactic acid) foams. Polymer. 1994;35:1068–77.CrossRefGoogle Scholar
  10. 10.
    Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 2002;8:43–52.CrossRefGoogle Scholar
  11. 11.
    Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–42.CrossRefGoogle Scholar
  12. 12.
    Lawson MA, Barralet JE, Wang L, Shelton RM, Triffitt JT. Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng. 2004;10:1480–91.Google Scholar
  13. 13.
    Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25:129–38.CrossRefGoogle Scholar
  14. 14.
    Lozinsky VI. Cryogels on the basis of natural and synthetic polymers: preparation, properties and areas of implementation. Russ Chem Rev. 2002;71:489–511.CrossRefGoogle Scholar
  15. 15.
    Lozinsky VI. New generation of macroporous and supermacroporous materials of biotechnological interest—polymeric cryogels. Russ Chem Bull. 2008;57:1015–32.CrossRefGoogle Scholar
  16. 16.
    Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26:5158–66.CrossRefGoogle Scholar
  17. 17.
    Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61–86.CrossRefGoogle Scholar
  18. 18.
    Venugopal J, Low S, Choon AT, Ramakrishna S. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008;84:34–48.Google Scholar
  19. 19.
    Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B. The potential of polymeric cryogels in bioseparation. Bioseparation. 2001;10:163–88.CrossRefGoogle Scholar
  20. 20.
    Dvir T, Tsur-Gang O, Cohen S. “Designer” scaffolds for tissue engineering and regeneration. Israel J Chem. 2005;45:487–94.CrossRefGoogle Scholar
  21. 21.
    Shalaby SW, Burg KJ. Absorbable biodegradable polymers. Boca Raton: CRC Press; 2004.Google Scholar
  22. 22.
    Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int. 2007;56:145–57.CrossRefGoogle Scholar
  23. 23.
    Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.CrossRefGoogle Scholar
  24. 24.
    Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol. 2006;17:395–418.CrossRefGoogle Scholar
  25. 25.
    Bent AE, Tutrone RT, McLennan MT, Lloyd LK, Kennelly MJ, Badlani G. Treatment of intrinsic sphincter deficiency using autologous ear chondrocytes as a bulking agent. Neurourol Urodyn. 2001;20:157–65.CrossRefGoogle Scholar
  26. 26.
    Bratthall G, Lindberg P, Havemose-Poulsen A, Holmstrup P, Bay L, Söderholm G, Norderyd O, Andersson B, Rickardsson B, Hallström H, Kullendorff B, Sköld Bell H. Comparison of ready-to-use EMDOGAIN-gel and EMDOGAIN in patients with chronic adult periodontitis. J Clin Periodontol. 2001;28:923–9.CrossRefGoogle Scholar
  27. 27.
    Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30:751–6.CrossRefGoogle Scholar
  28. 28.
    Bloch K, Lozinsky VI, Galaev IY, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln LG, Mattiasson B, Vardi P. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges. J Biomed Mater Res A. 2005;75:802–9.Google Scholar
  29. 29.
    Blanco TM, Mantalaris A, Bismarck A, Panoskaltsis N. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials. 2010;31:2243–51.CrossRefGoogle Scholar
  30. 30.
    Cullen DK, Stabenfeldt SE, Simon CM, Tate CC, LaPlaca MC. In vitro neural injury model for optimization of tissue-engineered constructs. J Neurosci Res. 2007;85:3642–51.CrossRefGoogle Scholar
  31. 31.
    Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res. 2001;57:268–78.CrossRefGoogle Scholar
  32. 32.
    Peng CK, Yu SH, Wu YB, Mi FL, Shyu SS. Polysaccharide-based artificial extracellular matrix: preparation and characterization of three-dimensional macroporous chitosan, and heparin composite scaffold. J Appl Polym Sci. 2008;109:3639–44.CrossRefGoogle Scholar
  33. 33.
    Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18:583–90.CrossRefGoogle Scholar
  34. 34.
    Chiu CT, Lee JS, Chu CS, Chang YP, Wang YJ. Development of two alginate-based wound dressings. J Mater Sci Mater Med. 2008;19:2503–13.CrossRefGoogle Scholar
  35. 35.
    Lozinsky VI, Simenel IA, Chebyshev AV. Method for the preparation of porous material. Russ Pat 2,035,476. 1994.Google Scholar
  36. 36.
    Petrenko YA, Ivanov RV, Lozinsky VI, Petrenko AYu. Comparison study of human bone marrow stromal cell seeding methods into wide-porous alginate cryogel scaffolds. Cell Technol Biol Med. 2010;4:225–8.Google Scholar
  37. 37.
    Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization—the conduit to viable engineered tissues. Tissue Eng Part B Rev. 2009;15(2):159–69.CrossRefGoogle Scholar
  38. 38.
    Libbrecht KG. The physics of snow crystals. Rep Prog Phys. 2005;68:855–96.CrossRefGoogle Scholar
  39. 39.
    Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.CrossRefGoogle Scholar
  40. 40.
    Cai X, Lin Y, Ou G, Luo E, Man Y, Yuan Q, Gong P. Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biol Int. 2007;31:776–83.CrossRefGoogle Scholar
  41. 41.
    Duggal S, Frønsdal KB, Szöke K, Shahdadfar A, Melvik JE, Brinchmann JE. Phenotype and gene expression of human mesenchymal stem cells in alginate scaffolds. Tissue Eng Part A. 2009;15:1763–73.CrossRefGoogle Scholar
  42. 42.
    Lin YJ, Yen CN, Hu YC, Wu YC, Liao CJ, Chu IM. Chondrocytes culture in three-dimensional porous alginate scaffolds enhanced cell proliferation, matrix synthesis and gene expression. J Biomed Mater Res A. 2009;88:23–33.Google Scholar
  43. 43.
    Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Wöltje M, Zenke M. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials. 2008;29:302–13.CrossRefGoogle Scholar
  44. 44.
    Smetana K Jr. Cell biology of hydrogels. Biomaterials. 1993;14:1046–50.CrossRefGoogle Scholar
  45. 45.
    Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80:2025–9.CrossRefGoogle Scholar
  46. 46.
    Yang C, Frei H, Rossi FM, Burt HM. The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds. J Tissue Eng Regen Med. 2009;3:601–14.CrossRefGoogle Scholar
  47. 47.
    Tan TW, Hu B, Jin XH, Zhang M. Release behavior of ketoprofen in chitosan/alginate microcapsules. J Bioact Biocomp Polym. 2003;18:207–18.CrossRefGoogle Scholar
  48. 48.
    Halberstadt C, Austin C, Rowley J, Culberson C, Loebsack A, Wyatt S, Coleman S, Blacksten L, Burg K, Mooney D, Holder W Jr. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng. 2002;8:309–19.CrossRefGoogle Scholar
  49. 49.
    Yang Y, Rossi FM, Putnins EE. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials. 2007;28:3110–20.CrossRefGoogle Scholar
  50. 50.
    Hong L, Peptan I, Clark P, Mao JJ. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Ann Biomed Eng. 2005;33:511–7.CrossRefGoogle Scholar
  51. 51.
    Kathuria N, Tripathi A, Kar KK, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater. 2009;5:406–18.CrossRefGoogle Scholar
  52. 52.
    Hermansson GT, Mallia AK, Smith PK. Immobilized affinity ligand techniques. San Diego: Academic Press Inc.; 1992.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yu. A. Petrenko
    • 1
  • R. V. Ivanov
    • 2
  • A. Yu. Petrenko
    • 1
  • V. I. Lozinsky
    • 2
  1. 1.Institute for Problems of Cryobiology and Cryomedicine NAS UkraineKharkovUkraine
  2. 2.A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations