Direct and interactive effects of three variables on properties of PMMA bone cement for vertebral body augmentation

  • Alejandro López
  • Erik Unosson
  • Håkan Engqvist
  • Cecilia PerssonEmail author


PMMA bone cements are widely used for vertebral body augmentation procedures vertebroplasty and balloon kyphoplasty. Although there are studies in the literature on the direct effects of relevant variables on the properties of these cements, there are none on the interactive effects. In the present work, such a study was performed on both types of effects, with the variables being the concentration of initiator (benzoyl peroxide), the concentration of crosslinker (ethylene glycol dimethacrylate), and the liquid-to-powder ratio used in preparing the cement; and the properties being the compressive strength, the compressive modulus, the doughing time, the setting time, and the maximum polymerization temperature. Two additional properties obtained from the viscosity-versus-time curves, namely the time at the onset of curing, and the critical curing rate were also studied. Significant interactive effects between the amount of crosslinker and the amount of radical initiator were found to affect the doughing time and the critical curing rate. These effects were explained in terms of the reaction kinetics. It was concluded that interactive effects may exist and should be taken into account when designing bone cement formulations.


Partial Little Square Bone Cement Benzoyl Peroxide EGDMA Ethylene Glycol Dimethacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding from the European Union for The Osteoporotic Virtual Physiological Human project (VPHOP FP7-ICT2008-223865) is gratefully acknowledged. We acknowledge Janne Bohlin from the Division of Polymer Chemistry at Uppsala University for the technical assistance in the use of the stress-controlled rheometer.


  1. 1.
    Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38(2):155–82.CrossRefGoogle Scholar
  2. 2.
    Lewis G. Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects. J Biomed Mater Res B. 2008;84B(2):301–19.CrossRefGoogle Scholar
  3. 3.
    Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6, Supplement 1):S305–16.CrossRefGoogle Scholar
  4. 4.
    Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res B. 2006;76B(2):456–68.CrossRefGoogle Scholar
  5. 5.
    Baroud G, Matsushita C, Samara M, Beckman L, Steffen T. Influence of oscillatory mixing on the injectability of three acrylic and two calcium-phosphate bone cements for vertebroplasty. J Biomed Mater Res B. 2004;68B(1):105–11.CrossRefGoogle Scholar
  6. 6.
    Race A, Mann KA, Edidin AA. Mechanics of bone/PMMA composite structures: an in vitro study of human vertebrae. J Biomech. 2007;40(5):1002–10.CrossRefGoogle Scholar
  7. 7.
    Hernández L, Vázquez B, López-Bravo A, Parra J, Goñi I, Gurruchaga M. Acrylic bone cements with bismuth salicylate: behavior in simulated physiological conditions. J Biomed Mater Res A. 2007;80A(2):321–32.CrossRefGoogle Scholar
  8. 8.
    Boger A, Bohner M, Heini P, Verrier S, Schneider E. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res B. 2008;86B(2):474–82.CrossRefGoogle Scholar
  9. 9.
    Boger A, Bisig A, Bohner M, Heini P, Schneider E. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. J Biomater Sci Polym Ed. 2008;19:1125–42.CrossRefGoogle Scholar
  10. 10.
    Loeffel M, Ferguson SJ, Nolte L-P, Kowal JH. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate. Spine. 2008;33(12):1352–9. doi: 10.1097/BRS.0b013e3181732aa9.CrossRefGoogle Scholar
  11. 11.
    Hernández L, Gurruchaga M, Goñi I. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J Mater Sci Mater Med. 2009;20(1):89–97.CrossRefGoogle Scholar
  12. 12.
    Lewis G, Koole LH, van Hooy-Corstjens CSJ. Influence of powder-to-liquid monomer ratio on properties of an injectable iodine-containing acrylic bone cement for vertebroplasty and balloon kyphoplasty. J Biomed Mater Res B. 2009;91B(2):537–44.CrossRefGoogle Scholar
  13. 13.
    Boger A, Bohner M, Heini P, Schwieger K, Schneider E. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Acta Biomater. 2008;4(6):1688–93.CrossRefGoogle Scholar
  14. 14.
    Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of experiments: principles and applications. Umeå: Umetrics; 2008.Google Scholar
  15. 15.
    Madigan S, Towler M, Lewis G. Optimisation of the composition of an acrylic bone cement: application to relative amounts of the initiator and the activator/co-initiator in Surgical Simplex® P. J Mater Sci Mater Med. 2006;17(4):307–11.CrossRefGoogle Scholar
  16. 16.
    Nussbaum DA, Gailloud P, Murphy K. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol. 2004;15(2):121–6.CrossRefGoogle Scholar
  17. 17.
    Deb S, Braden M, Bonfield W. Effect of crosslinking agents on poly(ethylmethacrylate) bone cements. J Mater Sci Mater Med. 1997;8(12):829–33.CrossRefGoogle Scholar
  18. 18.
    ASTM. F451, 2008, Standard specification for acrylic bone cement. West Conshohocken: ASTM International; 2008.Google Scholar
  19. 19.
    Farrar DF, Rose J. Rheological properties of PMMA bone cements during curing. Biomaterials. 2001;22(22):3005–13.CrossRefGoogle Scholar
  20. 20.
    Lewis G, Carroll M. Rheological properties of acrylic bone cement during curing and the role of the size of the powder particles. J Biomed Mater Res. 2002;63(2):191–9.CrossRefGoogle Scholar
  21. 21.
    Scranton AB, Bowman CN, Klier J, Peppas NA. Polymerization reaction dynamics of ethylene glycol methacrylates and dimethacrylates by calorimetry. Polymer. 1992;33(8):1683–9.CrossRefGoogle Scholar
  22. 22.
    Deb S, Vazquez B. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials. 2001;22(15):2177–81.CrossRefGoogle Scholar
  23. 23.
    Beck S, Boger A. Evaluation of the particle release of porous PMMA cements during curing. Acta Biomater. 2009;5(7):2503–7.CrossRefGoogle Scholar
  24. 24.
    Hernandez L, Muñoz ME, Goñi I, Gurruchaga M. New injectable and radiopaque antibiotic loaded acrylic bone cements. J Biomed Mater Res B. 2008;87B(2):312–20.CrossRefGoogle Scholar
  25. 25.
    Trout AT, Kallmes DF, Layton KF, Thielen KR, Hentz JG. Vertebral endplate fractures: an indicator of the abnormal forces generated in the spine after vertebroplasty. J Bone Miner Res. 2006;21(11):1797–802.CrossRefGoogle Scholar
  26. 26.
    Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg. 1984;42(11):705–11.CrossRefGoogle Scholar
  27. 27.
    Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma: a histological, histochemical and vital microscopic study in the rabbit. J Plast Reconstr Surg Hand Surg. 1984;18(3):261–8.CrossRefGoogle Scholar
  28. 28.
    Nicholas MKD, Waters MGJ, Holford KM, Adusei G. Analysis of rheological properties of bone cements. J Mater Sci Mater Med. 2007;18(7):1407–12.CrossRefGoogle Scholar
  29. 29.
    Yu Q, Zeng F, Zhu S. Atom transfer radical polymerization of poly(ethylene glycol) dimethacrylate. Macromolecules. 2001;34(6):1612–8.CrossRefGoogle Scholar
  30. 30.
    Turner RC, Atkins PE, Ackley MA, Park JB. Molecular and macroscopic properties of PMMA bone cement: Free-radical generation and temperature change versus mixing ratio. J Biomed Mater Res. 1981;15(3):425–32.CrossRefGoogle Scholar
  31. 31.
    Sun X, Chiu YY, Lee LJ. Microgel formation in the free radical cross-linking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA). Ind Eng Chem Res. 1997;36(4):1343–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alejandro López
    • 1
  • Erik Unosson
    • 1
  • Håkan Engqvist
    • 1
  • Cecilia Persson
    • 1
    Email author
  1. 1.Department of Engineering Sciences, Division of Applied Materials Science, The Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations