Skip to main content

Advertisement

Log in

Initial in vitro biocompatibility of a bone cement composite containing a poly-ε-caprolactone microspheres

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The biocompatibility of a reinforced calcium phosphate injectable bone substitute (CPC-IBS) containing 30% poly-ε-caprolactone (PCL) microspheres was evaluated. The IBS consisted of a solution of chitosan and citric acid as the liquid phase and tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) powder as the solid phase with 30% PCL microspheres. The surface of the CPC-IBS was observed by SEM, and analyzed by EDX profiles. The initial setting of the sample was lower in the IBS containing 0% citric acid than in the IBS containing 10 or 20% citric acid. The compressive strength of the PCL-incorporated CPC-IBS was measured using a Universal Testing Machine. The 20% citric acid samples had the highest mechanical strength at day 12, which was dependent on both time and the citric acid concentration. The in vitro bioactivity experiments with simulated body fluid (SBF) confirmed the formation of apatite on the sample surfaces after 2, 7, and 14 days of incubation in SBF. Ca and P ion release profile by ICP method also confirmed apatite nucleation on the CPC-IBS surfaces. The in vitro biocompatibility of the CPC-IBS was evaluated by using MTT, cellular adhesion, and spreading studies. In vitro cytotoxicity tests by MTT assay showed that the 0 and 10% CPC-IBS was cytocompatible for fibroblast L-929 cells. The SEM micrograph confirmed that MG-63 cells maintained their phenotype on all of the CPC-IBS surfaces although cellular attachment was better in 0 and 10% CPC-IBS than 20% samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dorozhkin SV. Calcium orthophosphate. J Mater Sci. 2007;42:1061–95.

    Article  CAS  Google Scholar 

  2. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17:31–5.

    Article  CAS  Google Scholar 

  3. Yamasaki H, Saki H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials. 1992;13:308–12.

    Article  CAS  Google Scholar 

  4. Toth M, Lynch KL, Hackbarth DA. Ceramic-induced osteogenesis following subcutaneous implantation of calcium phosphates. Bioceramics. 1993;6:9–13.

    CAS  Google Scholar 

  5. Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials. 1996;17:2131–7.

    Article  CAS  Google Scholar 

  6. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  CAS  Google Scholar 

  7. Oonishi H. Orthopaedic applications of hydroxyapatite. Biomaterials. 1991;12:171–8.

    Article  CAS  Google Scholar 

  8. Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  CAS  Google Scholar 

  9. Brown WE, Chow LC. A new calcium phosphate water setting cement. In: Brown PW, editor. Cement research progress. Westerville: American Ceramic Society; 1986. p. 352–79.

    Google Scholar 

  10. Ginebra MP, Trycova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–10.

    Article  CAS  Google Scholar 

  11. Chow LC. Calcium phosphate cements: chemistry, properties, and applications. Mater Res Soc Symp Proc. 2000;599:27–37.

    Article  CAS  Google Scholar 

  12. Chow LC, Takagi S. A natural bone cement—a laboratory novelty led to the development of revolutionary New biomaterials. J Res Natl Stand Technol. 2001;106:1029–33.

    CAS  Google Scholar 

  13. Thai VV, Lee BT. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxyl-propyl-methyl-cellulose and citric acid. J Mater Sci Mater Med. 2010;21:1867–74.

    Article  CAS  Google Scholar 

  14. Jyoti MA, Thai VV, Min YK, Lee BT, Song HY. In vitro bioactivity and biocompatibility of calcium phosphate cements using Hydroxy-propyl-methyl-Cellulose (HPMC). Appl Surf Sci. 2010;257:1533–9.

    Article  CAS  Google Scholar 

  15. Machida Y, Nagai T, Abe M, Sannan T. Use of chitosan and hydroxypropylchitosan in drug formulations to effect sustained release. Drug Dis Deliv. 1986;1:119–30.

    CAS  Google Scholar 

  16. Muzzarelli RAA, Biagini G, Bellardini M, Simonelli L, Castaldini C, Fraatto G. Osteoconduction exerted by methylpyrolidinone chitosan in dental surgery. Biomaterials. 1993;14:39–43.

    Article  CAS  Google Scholar 

  17. Suh JKF, Mathew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  Google Scholar 

  18. Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K. Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int J Biol Macromol. 1999;26:285–93.

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 1997;35:273–7.

    Article  Google Scholar 

  20. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1996;37:5849–57.

    Article  CAS  Google Scholar 

  21. Sinha VR, Bansal K, Kausik R, Kumrika R, Trehan A. Poly-ε-caprolactone microsphere and nanospheres: an overview. Int J Pharma. 2004;278:1–23.

    Article  CAS  Google Scholar 

  22. Gross RA, Kalra B. Biodegradable polymers for the environment. Science. 2002;297:803–7.

    Article  CAS  Google Scholar 

  23. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials. 1998;19:1405–12.

    Article  CAS  Google Scholar 

  24. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymer concepts in tissue engineering. J Biomed Mater Res A. 1998;43:422–7.

    Article  CAS  Google Scholar 

  25. Porter JR, Henson A, Popat KC. Biodegradable poly (3-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30:780–8.

    Article  CAS  Google Scholar 

  26. Iooss P, Ray A-ML, Grimandi G, Daculsi G, Merle C. A new injectable bone substitute combining poly (ε-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials. 2001;22:2785–94.

    Article  CAS  Google Scholar 

  27. Chang C-M, Bodmeier R. Organic solvent-free polymeric microspheres prepared from aqueous colloidal polymer dispersions by a w/o-emulsion technique. Int J Pharm. 1996;130:187–94.

    Article  CAS  Google Scholar 

  28. Sargin Y, Kizilyalli M, Telli C, Güler H. A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement: X-ray diffraction and IR studies. J Eur Ceram Soc. 1997;17:963–70.

    Article  CAS  Google Scholar 

  29. Guo D, Xu K, Han Y. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate. Mater Sci Eng B. 2005;116:175–81.

    Article  Google Scholar 

  30. ISO 9917-1. Dentistry-water-based cements-part 1: powder/liquid acid based cements. Geneva: ISO; 2003.

    Google Scholar 

  31. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12:155–63.

    Article  CAS  Google Scholar 

  32. Kokubo T, Takadama H. How useful SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  33. Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res. 1990;18:131–6.

    Article  CAS  Google Scholar 

  34. International standard. Biological evaluation of medical devices. Part 5: Test for in vitro cytotoxicity. ISO-10993-5:1999 (E); 1999.

  35. Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ. Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res. 1997;37:508–16.

    Article  CAS  Google Scholar 

  36. Pioletti DP, Muller J, Rakotomanana LR. Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone implant interface. Biomechanics. 2003;36:131–5.

    Article  Google Scholar 

  37. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res. 1998;40:324–35.

    Article  CAS  Google Scholar 

  38. Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mat Res. 2000;49:362–8.

    Article  CAS  Google Scholar 

  39. Bigerelle M, Anselme K, Dufresne E. An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion. Biomol Eng. 2002;19:79–83.

    Article  CAS  Google Scholar 

  40. Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. Porosity and pore size of [beta]-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008;4:1904–15.

    Article  CAS  Google Scholar 

  41. Yamauchi K, Takahashi T, Funaki K, Hamada Y, Yamashita Y. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation. Int J Oral Maxillofac Surg. 2010;39:1000–6.

    Article  CAS  Google Scholar 

  42. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007;28:3295–305.

    Article  CAS  Google Scholar 

  43. Chen W-C, Ju C-P, Tien Y-C, Lin J-HC. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces. Acta Biomater. 2009;5:1767–74.

    Article  CAS  Google Scholar 

  44. Sarda S, Fernández E, Nilsson M, Balcells M, Planell JA. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res. 2002;61:653–9.

    Article  CAS  Google Scholar 

  45. Kim Y-H, Jyoti MA, Youn M-H, Youn H-S, Seo H-S, Lee B-T, Song H-Y. In vitro and in vivo evaluation of a macro porous β-TCP granule shaped bone substitute fabricated by the fibrous monolithic process. Biomed Mater. 2010;5:1–11.

    Google Scholar 

  46. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993;14:359–64.

    Article  CAS  Google Scholar 

  47. Tettamanti G, Grimaldi A, Rinaldi L, Arnaboldi F, Congiu T, Valvassori R, de Eguileor M. The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell. 2004;96:443–55.

    Article  CAS  Google Scholar 

  48. Mossman BT. In vitro studies on the biologic effects of fibers: correlation with in vivo bioassays. Environ Health Perspect. 1990;88:319–22.

    Article  CAS  Google Scholar 

  49. Mossman BT. In vitro approaches for determining mechanisms of toxicity and carcinogenicity by asbestos in the gastrointestinal and respiratory tracts. Environ Health Perspect. 1983;53:155–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Yeon Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyoti, M.A., Song, HY. Initial in vitro biocompatibility of a bone cement composite containing a poly-ε-caprolactone microspheres. J Mater Sci: Mater Med 22, 1333–1342 (2011). https://doi.org/10.1007/s10856-011-4311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4311-x

Keywords

Navigation