Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture

  • Lily Boo
  • Lakshmi Selvaratnam
  • Cheh Chin Tai
  • Tunku Sara Ahmad
  • Tunku Kamarul


The use of mesenchymal stem cells (MSCs) in tissue repair and regeneration despite their multipotentiality has been limited by their cell source quantity and decelerating proliferative yield efficiency. A study was thus undertaken to determine the feasibility of using microcarrier beads in spinner flask cultures for MSCs expansion and compared to that of conventional monolayer cultures and static microcarrier cultures. Isolation and characterization of bone marrow derived MSCs were conducted from six adult New Zealand white rabbits. Analysis of cell morphology on microcarriers and culture plates at different time points (D0, D3, D10, D14) during cell culture were performed using scanning electron microscopy and bright field microscopy. Cell proliferation rates and cell number were measured over a period of 14 days, respectively followed by post-expansion characterization. MTT proliferation assay demonstrated a 3.20 fold increase in cell proliferation rates in MSCs cultured on microcarriers in spinner flask as compared to monolayer cultures (p < 0.05). Cell counts at day 14 were higher in those seeded on stirred microcarrier cultures (6.24 ± 0.0420 cells/ml) × 105 as compared to monolayer cultures (0.22 ± 0.004 cells/ml) × 105 and static microcarrier cultures (0.20 ± 0.002 cells/ml) × 105. Scanning electron microscopy demonstrated an increase in cell colonization of the cells on the microcarriers in stirred cultures. Bead-expanded MSCs were successfully differentiated into osteogenic and chondrogenic lineages. This system offers an improved and efficient alternative for culturing MSCs with preservation to their phenotype and multipotentiality.



We would like to thank to Puan Vijaya, Encik Roslee Halpi and staffs from the Scanning Electron Microscopy Unit, University of Malaya for their technical support and assistance. We are also grateful to Cik Noor Azera Bakar, Cik. Sahrinanah Mappiare, Cik. Hidaitul Masalaina bt Mohamed, and Dr. Haryanti Azura bt Hj Mohd Wali for their help in animal work. This work was funded by research grants from University of Malaya (Research grant number: PPP177/2009B & FS116/2008A).


  1. 1.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. doi: 10.1126/science.284.5411.143.CrossRefGoogle Scholar
  2. 2.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.CrossRefGoogle Scholar
  3. 3.
    Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orhtop Relat Res. 1991;262:298–311.Google Scholar
  4. 4.
    Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterisation of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81–8.CrossRefGoogle Scholar
  5. 5.
    Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng. 2005;11(5–6):787–802. doi: 10.1089/ten.2005.11.787.CrossRefGoogle Scholar
  6. 6.
    Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone-marrow derived mesenchymal stem cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309–13.CrossRefGoogle Scholar
  7. 7.
    Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA. 1995;92(11):4857–61.CrossRefGoogle Scholar
  8. 8.
    Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.CrossRefGoogle Scholar
  9. 9.
    Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA. 2002;99(13):8932–7. doi: 10.1073/pnas.132252399.99/13/8932[pii].CrossRefGoogle Scholar
  10. 10.
    Zhang XS, Linkhart TA, Chen ST, Peng H, Wergedal JE, Guttierez GG, et al. Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med. 2004;6(1):4–15. doi: 10.1002/jgm.477.CrossRefGoogle Scholar
  11. 11.
    Jorgensen C, Noel D, Apparailly F, Sany J. Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Ann Rheum Dis. 2001;60(4):305–9.CrossRefGoogle Scholar
  12. 12.
    Redding PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39.CrossRefGoogle Scholar
  13. 13.
    Carstanjen B, Desbois C, Hekmati M, Behr L. Successful engraftment of cultured autologous mesenchymal stem cells in a surgically repaired soft palate defect in an adult horse. Can J Vet Res. 2006;70(2):143–7.Google Scholar
  14. 14.
    Yan H, Yu C. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy. 2007;23(2):178–87. doi: 10.1016/j.arthro.2006.09.005.CrossRefGoogle Scholar
  15. 15.
    Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells. 2007;25(11):2964–71. doi: 10.1634/stemcells.2006-0311.CrossRefGoogle Scholar
  16. 16.
    van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature. 1967;216(5110):64–5.CrossRefGoogle Scholar
  17. 17.
    Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials. 1996;17(9):879–88.CrossRefGoogle Scholar
  18. 18.
    Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24(7):299–304.CrossRefGoogle Scholar
  19. 19.
    Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153–61.CrossRefGoogle Scholar
  20. 20.
    Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng. 2003;9(5):939–48. doi: 10.1089/107632703322495583.CrossRefGoogle Scholar
  21. 21.
    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84.CrossRefGoogle Scholar
  22. 22.
    Chen Y, Shao J-Z, Xiang L-X, Dong X-J, Zhang G-R. Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol. 2008;40(5):815–20.CrossRefGoogle Scholar
  23. 23.
    Muzlifah AH, Matthew PC, Christopher DB, Dazzi F. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica. 2009;94(2):258–63.CrossRefGoogle Scholar
  24. 24.
    Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.CrossRefGoogle Scholar
  25. 25.
    Copland I, Sharma K, Lejeune L, Eliopoulos N, Stewart D, Liu P, et al. CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Exp Hematol. 2008;36(1):93–103.CrossRefGoogle Scholar
  26. 26.
    Neupane M, Chang C-C, Kiupel M, Yuzbasiyan-Gurkan V. Isolation and characterization of canine adipose derived mesenchymal stem cells. Tissue Eng A. 2008;14(6):1007–15. doi: 10.1089/ten.tea.2007.0207.CrossRefGoogle Scholar
  27. 27.
    Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol. 2004;95(5):209–14.CrossRefGoogle Scholar
  28. 28.
    da Silva Meirelles L, Nance BN. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003;123(4):702–11.CrossRefGoogle Scholar
  29. 29.
    da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(11):2204–13. doi: 10.1242/jcs.02932.CrossRefGoogle Scholar
  30. 30.
    Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther. 2010;1(4):31. doi: 10.1186/scrt31.CrossRefGoogle Scholar
  31. 31.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64(2):295–312.CrossRefGoogle Scholar
  32. 32.
    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.CrossRefGoogle Scholar
  33. 33.
    Hopcroft D, Mason D, Scott R. Adult rat pancreatic islet cells adherent to microcarrier beads: evaluation of function and morphology. In Vitro Cell Dev B. 1985;21(9):485–7. doi: 10.1007/bf02620838.CrossRefGoogle Scholar
  34. 34.
    Schop D, Janssen FW, Borgart E, de Bruijn JD, van Dijkhuizen-Radersma R. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism. J Tissue Eng Regen Med. 2008;2(2–3):126–35.CrossRefGoogle Scholar
  35. 35.
    Park Y, Subramanian K, Verfaillie CM, Hu WS. Expansion and hepatic differentiation of rat multipotent adult progenitor cells in microcarrier suspension culture. J Biotechnol. 2010;150(1):131–9.CrossRefGoogle Scholar
  36. 36.
    Kwon J, Kim B-S, Kim M-J, Park H-W. Suspension culture of hematopoietic stem cells in stirred bioreactors. Biotechnol Lett. 2003;25(2):179–82. doi: 10.1023/a:1021994026859.CrossRefGoogle Scholar
  37. 37.
    Sart S, Schneider YJ, Agathos SN. Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol. 2009;139(4):291–9.CrossRefGoogle Scholar
  38. 38.
    Gigout A, Buschmann MD, Jolicoeur M. Chondrocytes cultured in stirred suspension with serum-free medium containing pluronic-68 aggregate and proliferate while maintaining their differentiated phenotype. Tissue Eng A. 2009;15(8):2237–48. doi: 10.1089/ten.tea.2008.0256.CrossRefGoogle Scholar
  39. 39.
    Weber C, Pohl S, Pörtner R, Wallrapp C, Kassem M, Geigle P, et al. Expansion and harvesting of hMSC-TERT. Open Biomed Eng J. 2007;1:38–46.Google Scholar
  40. 40.
    Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog. 2007;23(1):187–93.CrossRefGoogle Scholar
  41. 41.
    Athari A, Unthan-Fecher K, Schwartz P, Probst I. Adult rat hepatocyte microcarrier culture. Comparison to the conventional dish culture system. In Vitro Cell Dev Biol. 1988;24(11):1085–91.CrossRefGoogle Scholar
  42. 42.
    Alves PM, Moreira JL, Rodrigues JM, Aunins JG, Carrondo MJ. Two-dimensional versus three-dimensional culture systems: effects on growth and productivity of BHK cells. Biotechnol Bioeng. 1996;52(3):429–32.CrossRefGoogle Scholar
  43. 43.
    Chun BH, Chung SI. Attachment characteristics of normal human cells and virus-infected cells on microcarriers. Cytotechnology. 2001;37(1):1–12.CrossRefGoogle Scholar
  44. 44.
    Mered B, Albrecht P, Hopps HE. Cell growth optimization in microcarrier culture. In Vitro. 1980;16(10):859–65.CrossRefGoogle Scholar
  45. 45.
    Melero-Martin JM, Dowling M-A, Smith M, Al-Rubeai M. Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems. Biomaterials. 2006;27(15):2970–9.CrossRefGoogle Scholar
  46. 46.
    Yang Y, Rossi FMV, Putnins EE. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials. 2007;28(20):3110–20.CrossRefGoogle Scholar
  47. 47.
    Dürrschmid M, Landauer K, Simic G, Blüml G, Doblhoff-Dier O. Scalable inoculation strategies for microcarrier-based animal cell bioprocesses. Biotechnol Bioeng. 2003;83(6):681–6.CrossRefGoogle Scholar
  48. 48.
    Abranches E, Bekman E, Henrique D, Cabral JMS. Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng. 2007;96(6):1211–21.CrossRefGoogle Scholar
  49. 49.
    Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A. 2009;89(1):96–107.Google Scholar
  50. 50.
    Chen X, Xu H, Wan C, McCaigue M, Li G. Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells. 2006;24(9):2052–9. doi: 10.1634/stemcells.2005-0591.CrossRefGoogle Scholar
  51. 51.
    Kuriyama S, Nakano T, Yoshimura N, Ohuchi T, Moritera T, Honda Y. Mass cultivation of human retinal pigment epithelial cells with microcarrier. Ophthalmologica. 1992;205(2):89–95.CrossRefGoogle Scholar
  52. 52.
    Qiu Q, Ducheyne P, Gao H, Ayyaswamy P. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng. 1998;4(1):19–34. doi: 10.1089/ten.1998.4.19.CrossRefGoogle Scholar
  53. 53.
    da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(9):2287–99. doi: 10.1634/stemcells.2007-1122.CrossRefGoogle Scholar
  54. 54.
    Afizah H, Yang Z, Hui JH, Ouyang H-W, Lee E-H. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 2007;13(4):659–66. doi: 10.1089/ten.2006.0118.CrossRefGoogle Scholar
  55. 55.
    Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93(6):1152–63.CrossRefGoogle Scholar
  56. 56.
    Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J Tissue Eng Regen Med. 2007;1(6):417–24.CrossRefGoogle Scholar
  57. 57.
    Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009;2(3):219–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lily Boo
    • 1
  • Lakshmi Selvaratnam
    • 2
  • Cheh Chin Tai
    • 3
  • Tunku Sara Ahmad
    • 1
  • Tunku Kamarul
    • 1
  1. 1.Tissue Engineering Group, Department of Orthopaedic Surgery, Faculty of MedicineNational Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), University of MalayaKuala LumpurMalaysia
  2. 2.School of Medicine and Health SciencesMonash UniversityBandar SunwayMalaysia
  3. 3.Sime Darby Medical CentreSubang JayaMalaysia

Personalised recommendations