Advertisement

Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments

  • E. Espinar
  • J. M. Llamas
  • A. Michiardi
  • M. P. Ginebra
  • F. J. GilEmail author
Article

Abstract

This work studies NiTi orthodontic archwires that have been treated using a new oxidation treatment for obtaining Ni-free surfaces. The titanium oxide on the surface significantly improves corrosion resistance and decreases nickel ion release, while barely affecting transformation temperatures. This oxidation treatment avoids the allergic reactions or toxicity in the surrounding tissues produced by the chemical degradation of the NiTi. In the other hand, the lack of low friction coefficient for the NiTi superelastic archwires makes difficult the optimal use of these materials in Orthodontic applications. In this study, the decrease of this friction coefficient has been achieved by means of oxidation treatment. Transformation temperatures, friction coefficient and ion release have been determined.

Keywords

Friction Coefficient Transformation Temperature Tooth Movement Oxidation Treatment NiTi Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Duerig TW, Zadno R. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann Ltd.; 1990. p. 124–32.Google Scholar
  2. 2.
    Tosho S. In: Funakubo H, editor. Shape memory alloys, vol 1. Tokyo: Gordon and Breach Science Publishers; 1984. p. 23–30.Google Scholar
  3. 3.
    Perkins J. Shape memory effects in alloys. New York: Plenum Press; 1975. p. 12–24.Google Scholar
  4. 4.
    Purdy GR, Parr JG. Shape memory effect in NiTi alloys. Trans. AIME. 1981;6:23–5.Google Scholar
  5. 5.
    Michiardi A, Engel E, Aparicio C, Planell JA, Gil FJ. Oxidized NiTi surfaces enhance differentiation of osteoblast-like cells. J Biomed Mater Res. 2008;85A:108–14.CrossRefGoogle Scholar
  6. 6.
    Michiardi A, Aparicio C, Planell JA, Gil FJ. J Biomed Mater Res B. 2006;77B:249–56.CrossRefGoogle Scholar
  7. 7.
    Arciniegas M, Casals J, Manero JM, Peña J, Gil FJ. Study of hardness and wear behaviour of NiTi shape memory alloys. J Alloys Compd. 2008;460:213–9.CrossRefGoogle Scholar
  8. 8.
    Andreasen GF, Morrow RE. Laboratory and clinical analysis of nitinol wire. Am J Orthod. 1978;73:142–9.CrossRefGoogle Scholar
  9. 9.
    Andreasen GF. A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31°C and 45°C. Am J Orthod. 1980;78:528–36.CrossRefGoogle Scholar
  10. 10.
    Miura F, Mogi M, Ohura Y, Karibe M. The superelastic Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop. 1988;94(2):89–96.CrossRefGoogle Scholar
  11. 11.
    Burstone CJ, Qin B, Morton JY. NiTi archwire a new orthodontic alloy. Am J Orthod. 1985;87(6):445–52.CrossRefGoogle Scholar
  12. 12.
    Suárez C, Vilar T, Gil J, Sevilla P. In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires. J Mater Sci Mater Med. 2010;21:675–83.CrossRefGoogle Scholar
  13. 13.
    Wever DJ. Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 1998;19:761–9.CrossRefGoogle Scholar
  14. 14.
    Gil FJ, Manero JM, Planell JA. Effect of grain size on the martensitic transformation in NiTi alloys. J Mater Sci. 1995;30:2526–30.CrossRefGoogle Scholar
  15. 15.
    Saburi T, Tatsumi T, Nenno S. Effects of heat treatment on mechanical behavior of Ti–Ni alloys. J Phys, ICOMAT-82, COLLOQUE C4. 1982; 261–6Google Scholar
  16. 16.
    Chan CM, Trigwell S, Duerig T. Surf. Interface Anal. 1990;15:349–54.Google Scholar
  17. 17.
    Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeek J. Surface oxidation of NiTi shape memory alloy. Biomaterials. 2002;23:4863–71.CrossRefGoogle Scholar
  18. 18.
    Armitage DA, Grant DM. Mater Sci Eng A. 2003;349:89–97.CrossRefGoogle Scholar
  19. 19.
    Li YH, Rong LJ, Li YY. J Alloys Compd. 2001;325:259–62.CrossRefGoogle Scholar
  20. 20.
    Itin VH, Gjunter VE, Shabalovskaya SA. Mechanical properties and shape memory of porous nitinol. Mater Charact. 1994;32:179–82.CrossRefGoogle Scholar
  21. 21.
    Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1995;18:317–28.CrossRefGoogle Scholar
  22. 22.
    Li YH, Rong LJ, Li YY. J Alloys Compd. 2002;345:271–4.CrossRefGoogle Scholar
  23. 23.
    Green SM, Grant DM, Wood JV. XPS characterization of surface modified Ni–Ti shape memory alloy. Mater Sci Eng A. 1997;224:21–5.CrossRefGoogle Scholar
  24. 24.
    Espinos JP, Fernandez A, Gonzalez-Elipe AR. Surf Sci. 1993;295:402–10.CrossRefGoogle Scholar
  25. 25.
    Gil FJ, Manero JM, Planell JA. J Mater Sci Mater Med. 1996;7:403–6.CrossRefGoogle Scholar
  26. 26.
    Gil FJ, Libenson C, Planell JA. J Mater Sci Mater Med. 1993;4:281–4.CrossRefGoogle Scholar
  27. 27.
    Shabalovskaya SA. Surface spectroscopic characterization of NiTi nearly equiatomic shape memory alloys for implants. J Vac Sci Technol A. 1995;13(5):2624–32.CrossRefGoogle Scholar
  28. 28.
    Gil FJ, Solano E, Pena J, Mendoza A. J Appl Biomater Biomech. 2004;2:151–5.Google Scholar
  29. 29.
    Gil FJ, Solano E, Campos A, Boccio F, Saez I, Alfonso MV, Planell JA. Improvement of the friction behaviour of NiTi orthodontic archwires by nitrogen diffusion. Biomed Mater Eng. 1998;8:335–42.Google Scholar
  30. 30.
    Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24:3585–92.CrossRefGoogle Scholar
  31. 31.
    Peltonen L. Nickel sensitivity in the general population. Contact Dermat. 1979;5:27–32.CrossRefGoogle Scholar
  32. 32.
    Dunlap CL, Vincent SK, Barker BF. Allergic reaction to orthodontic wire: report case. JADA. 1989;11:449–50.Google Scholar
  33. 33.
    Cejna M, Virmani R, Jones R, Bergmeister H, Loewe C, Schroder M, Grgurin M, Lammer J. J Vasc Interv Radiol. 2001;12:351–9.CrossRefGoogle Scholar
  34. 34.
    Shabalovskaya SA, Anderegg JW. Surface spectroscopic characterization of TiNi nearly equiatomic shape memory alloys for implants. J Vasc Sci Technol A. 1995;13:2624–32.CrossRefGoogle Scholar
  35. 35.
    Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res. 1997;34:29–37.CrossRefGoogle Scholar
  36. 36.
    Wataha JC, O’dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE. Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res B. 2001;58:537–44.CrossRefGoogle Scholar
  37. 37.
    Albrektsson T, Branemark P-I, Hansson HA, Kasemo B, Larsson K, Lundstrom I, Mcqueen DH, Skalak R. The interface zone of inorganic implants in vivo: titanium implants in bone. Ann Biomed Eng. 1983;11:1–27.CrossRefGoogle Scholar
  38. 38.
    Cederbrant K, Andersson C, Andersson T, Marcusson-Stahl M, Hultman P. Int Arch Allergy Immunol. 2003;132:373–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Espinar
    • 1
  • J. M. Llamas
    • 1
  • A. Michiardi
    • 2
  • M. P. Ginebra
    • 2
  • F. J. Gil
    • 2
    Email author
  1. 1.Grupo de Investigación en Ortodoncia, Facultad de OdontologíaUniversidad de SevillaSevillaSpain
  2. 2.CREB, Dept. C. Materiales e Ingeniería Metalúrgica, ETSEIBUniversidad Politécnica de CataluñaBarcelonaSpain

Personalised recommendations