Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study

  • Jouni T. Heikkilä
  • Juha KukkonenEmail author
  • Allan J. Aho
  • Susanna Moisander
  • Timo Kyyrönen
  • Kimmo Mattila


Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25–82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31–82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients’ subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.


Iliac Crest Bioactive Glass Plain Film Calcium Phosphate Cement Hydroxylapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sincere thanks to Biostatistician Hans Helenius, MSc., Head of the Department of Biostatistics, University of Turku, for his valuable help in organizing the statistical analysis of the data.


  1. 1.
    Honkonen SE. Indications for surgical treatment of tibial condyle fractures. Clin Orthop Relat Res. 1994;302:199–205.Google Scholar
  2. 2.
    Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res. 1993;292:87–100.Google Scholar
  3. 3.
    Waddell JP, Johnston DW. Fractures of the tibial plateau: a review of ninety-five patients and comparison of treatment methods. J Trauma. 1981;21(5):376–81.CrossRefGoogle Scholar
  4. 4.
    Cockin J. Autologous bone crafting-complications at the donor site. J Bone Joint Surg. 1971;53B(1):153.Google Scholar
  5. 5.
    Burri C, Bartzke G, Goldewey J, Muggler E. Fractures of the tibial plateau. Clin Orthop Relat Res. 1979;138:84–93.Google Scholar
  6. 6.
    Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, Van Wagoner M, Smith ST. Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma. 1997;11(2):110–6.CrossRefGoogle Scholar
  7. 7.
    Kopylov P, Runnqvist K, Jonsson K, Aspenberg P. Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand. 1999;70(1):1–5.CrossRefGoogle Scholar
  8. 8.
    Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res. 1989;240:53–62.Google Scholar
  9. 9.
    Suzuki K, Kurabayashi H. Efficiency of hydroxyapatite-tricalcium phosphate-composite (HAP–TCP) for bone defect of tibia fracture—comparison between HAP–TCP and autogenous iliac bone. In: Andersson ÖH, Happonen RP, Yli-Urpo A, editors. Bioceramics, vol. 7. Oxford: Butterworth-Heinemann Ltd; 1994. p. 435–40.Google Scholar
  10. 10.
    Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD. Augmentation of femoral neck fracture fixation with an injectable calcium–phosphate bone mineral cement. J Orthop Res. 1996;14(5):786–93.CrossRefGoogle Scholar
  11. 11.
    Andersson ÖH, Liu G, Karlsson KH, Niemi L, Miettinen J, Juhanoja J. In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J Mater Sci Mater Med. 1990;1:219–27.CrossRefGoogle Scholar
  12. 12.
    Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mat Res Symp. 1971;N2(Part-1):117–43.CrossRefGoogle Scholar
  13. 13.
    Heikkilä JT, Aho HJ, Yli-Urpo A, Happonen RP, Aho AJ. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop Scand. 1995;66(5):463–7.CrossRefGoogle Scholar
  14. 14.
    Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27(17):3249–55.CrossRefGoogle Scholar
  15. 15.
    15. Hench LL, Andersson ÖH. Bioactive glasses. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: Reed Healthcare Communications; 1993. pp. 41–62.Google Scholar
  16. 16.
    Heikkilä JT, Aho AJ, Yli-Urpo A, Andersson OH, Aho HJ, Happonen RP. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Acta Orthop Scand. 1993;64(6):678–82.CrossRefGoogle Scholar
  17. 17.
    Andersson ÖH, Liu G, Kangasniemi K, et al. Evaluation of the acceptance of glass in bone. J Mater Sci Mater Med. 1992;3:145–50.CrossRefGoogle Scholar
  18. 18.
    Lindfors NC, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone. 2010;47:212–8.CrossRefGoogle Scholar
  19. 19.
    Turunen T, Peltola J, Yli-Urpo A, Happonen RP. Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implant Res. 2004;15(2):135–41.CrossRefGoogle Scholar
  20. 20.
    Lindfors NC, Koski I, Heikkilä JT, Mattila K, Aho AJ. A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res Appl Biomater. 2010;94:157–64.Google Scholar
  21. 21.
    Jallot E, Benhayoune H, Kilian L, Irigaray JL, Barbotteau Y, Balossier G, Bonhomme P. Dissolution kinetics, selective leaching, and interfacial reactions of a bioglass coating enriched in alumina. J Colloid Interface Sci. 2001;233(1):83–90.CrossRefGoogle Scholar
  22. 22.
    Lindfors NC. Treatment of a recurrent aneurysmal bone cyst with bioactive glass in a child allows for good bone remodelling and growth. Bone. 2009;45(2):398–400.CrossRefGoogle Scholar
  23. 23.
    Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral micro organisms. Acta Odontol Scand. 1998;56(3):161–5.CrossRefGoogle Scholar
  24. 24.
    Peltola M, Suonpää J, Aitasalo K, Varpula M, Yli-Urpo A, Happonen RP. Obliteration of the frontal sinus cavity with bioactive glass. Head Neck. 1998;20(4):315–9.CrossRefGoogle Scholar
  25. 25.
    Aitasalo K, Suonpää J, Peltola M, et al. Behaviour of bioactive glass (S53P4) in human frontal sinus obliteration. In: Sedel L, Rey C, editors. Bioceramics, vol. 10. Cambridge: Elsevier Science Ltd; 1997. p. 429–32.CrossRefGoogle Scholar
  26. 26.
    Wilson J, Clark AE, Douek E, et al. Clinical applications of Bioglass implants. In: Andersson ÖH, Happonen RP, Yli-Urpo A, editors. Bioceramics, vol. 7. Oxford: Butterworth-Heinemann Ltd; 1994. p. 415–22.Google Scholar
  27. 27.
    Aho AJ, Suominen E, Alanen A, Yli-Urpo A, Knuuti J, Aho HJ. Remodelling of the tibia after grafting of a large cavity with particulate bioactive glass–hydroxylapatite-case report on treatment of fibrous dysplasia with 13 years follow-up. Acta Orthop Scand. 2003;74(6):766–70.CrossRefGoogle Scholar
  28. 28.
    Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ. Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res Appl Biomater. 2009;90:131–6.Google Scholar
  29. 29.
    Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res. 1979;138:94–104.Google Scholar
  30. 30.
    Holzach P, Matter P, Minter J. Arthroscopically assisted treatment of lateral tibial plateau fractures in skiers: use of a cannulated reduction system. J Orthop Trauma. 1994;8(4):273–81.CrossRefGoogle Scholar
  31. 31.
    Asik M, Cetik O, Talu U, Sozen YV. Arthroscopy-assisted operative management of tibial plateau fractures. Knee Surg Sports Traumatol Arthrosc. 2002;10(6):364–70.CrossRefGoogle Scholar
  32. 32.
    Segur JM, Torner P, Garcia S, Combalia A, Ramon R. Use of bone allograft in tibial plateau fractures. Arch Orthop Trauma Surg. 1998;117(6-7):357–9.CrossRefGoogle Scholar
  33. 33.
    Lasanianos N, Mouzopoulos G, Garnavos C. The use of freeze-dried cancelous allograft in the management of impacted tibial plateau fractures. Injury. 2008;39(10):1106–12.CrossRefGoogle Scholar
  34. 34.
    Itokazu M, Matsunaga T, Ishii M, Kusakabe H, Wyni Y. Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop Trauma Surg. 1996;115(1):45–8.CrossRefGoogle Scholar
  35. 35.
    Lobenhoffer P, Gerich T, Witte F, Tscherne H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma. 2002;16(3):143–9.CrossRefGoogle Scholar
  36. 36.
    Trenholm A, Landry S, McLaughlin K, Deluzio KJ, Leighton J, Trask K, Leighton RK. Comparative fixation of tibial plateau fractures using alpha-BSM, a calcium phosphate cement, versus cancellous bone graft. J Orthop Trauma. 2005;19(10):698–702.CrossRefGoogle Scholar
  37. 37.
    Horstmann WG, Verheyen CC, Leemans R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury. 2003;34(2):141–4.CrossRefGoogle Scholar
  38. 38.
    Simpson D, Keating JF. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury. 2004;35(9):913–8.CrossRefGoogle Scholar
  39. 39.
    Welch RD, Zhang H, Bronson DG. Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J Bone Joint Surg Am. 2003;85-A(2):222–31.Google Scholar
  40. 40.
    Russell TA, Leighton RK. Alpha-BSM Tibial Plateau Fracture Study Group. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am. 2008;90(10):2057–61.CrossRefGoogle Scholar
  41. 41.
    Aho AJ, Heikkilä JT. Bone substitutes and related materials in clinical orthopaedics. In: Phillips GO, von Versen R, editors. Advances in Tissue Banking, vol. 1. Singapore: World Scientific; 1997. p. 73–108.Google Scholar
  42. 42.
    Chan PS, Klimkiewicz JJ, Luchetti WT, Esterhai JL, Kneeland JB, Dalinka MK, Heppenstall RB. Impact of CT scan on treatment plan and fracture classification of tibial plateau fractures. J Orthop Trauma. 1997;11(7):484–9.CrossRefGoogle Scholar
  43. 43.
    Morii T, Koshino T, Odaka T, et al. Roentgenological and histological observations of bone reaction of glass–ceramic beads in tibial metaphysis and fibular diaphysis of man. In: Vincenzini P, editor. Ceramics in Clinical Applications. Amsterdam: Elsevier; 1987. p. 361–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jouni T. Heikkilä
    • 1
  • Juha Kukkonen
    • 2
    Email author
  • Allan J. Aho
    • 2
  • Susanna Moisander
    • 2
  • Timo Kyyrönen
    • 3
    • 4
  • Kimmo Mattila
    • 4
    • 5
  1. 1.Sports Clinic MehiläinenTurkuFinland
  2. 2.Department of TraumatologyTurku University HospitalTurkuFinland
  3. 3.Medical Imaging Centre of Southwest Finland, Salo District HospitalUniversity of TurkuTurkuFinland
  4. 4.Department of Diagnostic RadiologyUniversity of TurkuTurkuFinland
  5. 5.Medical Imaging Centre of Southwest FinlandTurku University HospitalTurkuFinland

Personalised recommendations