Advertisement

Na-doped β-tricalcium phosphate: physico-chemical and in vitro biological properties

  • Laëtitia Obadia
  • Marion Julien
  • Sophie Quillard
  • Thierry Rouillon
  • Paul Pilet
  • Jérôme Guicheux
  • Bruno Bujoli
  • Jean-Michel Bouler
Article

Abstract

Synthetic calcium phosphate ceramics as β-tricalcium phosphate (Ca3(PO4)2; β-TCP) are currently successfully used in human bone surgery. The aim of this work was to evaluate the influence of the presence of sodium ion in β-TCP on its mechanical and biological properties. Five Na-doped-β-TCP [Ca10.5−x/2Na x (PO4)7, 0 ≤ x ≤ 1] microporous pellets were prepared via solid phase synthesis, and their physico-chemical data (lattice compacity, density, porosity, compressive strength, infrared spectra) denote an increase of the mechanical properties and a decrease of the solubility when the sodium content is raised. On the other hand, the in vitro study of MC3T3-E1 cell activity (morphology, MTS assay and ALP activity) shows that the incorporation of sodium does not modify the bioactivity of the β-TCP. These results strongly suggest that Na-doped-β-TCP appear to be good candidates for their use as bone substitutes.

Keywords

Compressive Strength Bone Substitute Transwell Insert Calcium Phosphate Ceramic Phosphate Buffer Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by CNRS “Programme Matériaux Nouveaux, Nouvelles Fonctionnalités”, Région Pays de Loire “Programme Biomatériaux S3” and Fondation Avenir pour la Recherche Médicale appliquée, étude ET2-321. Marion Julien received a fellowship from INSERM and region des Pays de la Loire.

References

  1. 1.
    LeGeros JP. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.CrossRefGoogle Scholar
  2. 2.
    Cavagna R, Daculsi G, Bouler J. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long Term Eff Med Implants. 1999;9:403–12.Google Scholar
  3. 3.
    Ransford A, Morley T, Edgar M, Webb P, Passuti N, Chopin D, et al. Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br. 1998;80:13–8.CrossRefGoogle Scholar
  4. 4.
    Rey C. Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials. 1990;11:13–5.CrossRefGoogle Scholar
  5. 5.
    Bouler J-M, Trécant M, Delécrin J, Royer J, Passuti N, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J Biomed Mater Res. 1996;32:603–9.CrossRefGoogle Scholar
  6. 6.
    Pecqueux F, Tancret F, Payraudeau N, Bouler J-M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment. J Eur Ceram Soc. 2010;30:819–29.CrossRefGoogle Scholar
  7. 7.
    Perera FH, Martinez-Vazquez FJ, Miranda P, Ortiz AL, Pajares A. Clarifying the effect of sintering conditions on the microstructure and mechanical properties of beta-tricalcium phosphate. Ceram Int. 2010;36(6):1929–35.CrossRefGoogle Scholar
  8. 8.
    Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, et al. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50(2):184–90.CrossRefGoogle Scholar
  9. 9.
    Ito A, Kawamura H, Miyakawa S, Layrolle P, Kanzaki N, Treboux G, et al. Resorbability and solubility of zinc-containing tricalcium phosphate. J Biomed Mater Res. 2002;60:224–31.CrossRefGoogle Scholar
  10. 10.
    Lazoryak BI, Strunenkova TV, Golubev VN, Vovk EA, Ivanov LN. Triple phosphates of calcium, sodium and trivalent elements with whitlockite-like structure. Mater Res Bull. 1996;31(2):207–16.CrossRefGoogle Scholar
  11. 11.
    Obadia L, Deniard D, Alonso B, Rouillon T, Jobic S, Guicheux J, et al. Effect of sodium doping in β-tricalcium phosphate on its structure and properties. Chem Mater. 2006;18:1425–33.CrossRefGoogle Scholar
  12. 12.
    Tabor D. The hardness of solids. Rev Phys Technol. 1970;1:145–79.CrossRefGoogle Scholar
  13. 13.
    Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32(5):751–67.CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Carvajal J, Roisnel T. Fullprof.98 and WinPLOTR: New Windows 95/NT application for diffraction. Commission for powder diffraction, international union of crystallography 1998; newsletter n 20.Google Scholar
  15. 15.
    Rodriguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials. 2003;24(21):3777–85.CrossRefGoogle Scholar
  16. 16.
    Berar JF, Lelann P. E.S.D’s and estimated probalble error obtained in Rietveld refinement with local correlation. J Appl Cryst. 1991;24:1–5.CrossRefGoogle Scholar
  17. 17.
    Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003;18(11):2060–8.CrossRefGoogle Scholar
  18. 18.
    Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res. 2006;21(5):674–83.CrossRefGoogle Scholar
  19. 19.
    Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005;26(2):157–65.CrossRefGoogle Scholar
  20. 20.
    Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P, Weiss P, et al. Physico-chemical–mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials. 2007;28:956–65.CrossRefGoogle Scholar
  21. 21.
    Relic B, Guicheux J, Mezin F, Lubberts E, Togninalli D, Garcia I, et al. Il-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis. J Immunol. 2001;166(4):2775–82.Google Scholar
  22. 22.
    Verron E, Masson M, Khoshniat S, Duplomb L, Wittrant Y, Baud’huin M, et al. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol. 2010;159:1681–92.CrossRefGoogle Scholar
  23. 23.
    Quillard S, Obadia L, Deniard P, Bujoli B, Bouler JM. Vibrational properties of sodium substituted β-tricalcium phosphate. Key Eng Mater. 2008;361–363:75–8.CrossRefGoogle Scholar
  24. 24.
    Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the ν4 PO4 domain. Calcif Tissue Int. 1990;46:384–94.CrossRefGoogle Scholar
  25. 25.
    Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the ν3 PO4 domain. Calcif Tissue Int. 1991;49:383–8.CrossRefGoogle Scholar
  26. 26.
    Elliott JC. Structure and chemistry of the apatites and other calcium phosphates. Studies in inorganic chemistry. Amsterdam: Elsevier; 1994. p. 389.Google Scholar
  27. 27.
    LeGeros RZ. Calcium phosphate in oral biology and medicine. In: Myers HM, editor. Monograph in oral science. Switzerland: Karger; 1991. p. 1–201.Google Scholar
  28. 28.
    Collin I, Lamy B, Gauthier O, Bouler J-M. Improvement of macroporous biphasic phosphocalcic ceramics for the filling of bone defects. ITBM-RBM. 2005;26(4):247–8.CrossRefGoogle Scholar
  29. 29.
    Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler J-M, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26(27):5444–53.CrossRefGoogle Scholar
  30. 30.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.CrossRefGoogle Scholar
  31. 31.
    Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, et al. Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res. 2003;21(4):638–47.CrossRefGoogle Scholar
  32. 32.
    Bouler J-M, Daculsi G. In vitro carbonated apatite precipitation on biphasic calcium phosphate pellets presenting various HA/-TCP ratios. Key Eng Mater. 2001;192–195:119–22.CrossRefGoogle Scholar
  33. 33.
    Kokubo T, Kim HM, Kawashita M, Nakamura T. Process of calcification on artificial materials. Z Kardiol. 2001;90(3):86–91.Google Scholar
  34. 34.
    Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31(3):173–80.CrossRefGoogle Scholar
  35. 35.
    Chesmel KD, Clark CC, Brighton CT, Black J. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell populations. J Biomed Mater Res. 1995;29(9):1101–10.CrossRefGoogle Scholar
  36. 36.
    Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22(1):87–96.CrossRefGoogle Scholar
  37. 37.
    Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26(23):4847–55.CrossRefGoogle Scholar
  38. 38.
    Meleti Z, Shapiro IM, Adams CS. Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone. 2000;27(3):359–66.CrossRefGoogle Scholar
  39. 39.
    Farley JR, Hall SL, Tanner MA, Wergedal JE. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res. 1994;9(4):497–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laëtitia Obadia
    • 1
  • Marion Julien
    • 1
  • Sophie Quillard
    • 1
  • Thierry Rouillon
    • 1
  • Paul Pilet
    • 1
  • Jérôme Guicheux
    • 1
  • Bruno Bujoli
    • 2
  • Jean-Michel Bouler
    • 1
  1. 1.INSERM, UMR 791, LIOAD, Faculté de Chirurgie DentaireUniversité de NantesNantes Cedex 1France
  2. 2.CNRS, UMR 6230, CEISAM, UFR Sciences et TechniquesUniversité de NantesNantes Cedex 3France

Personalised recommendations