Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 11, pp 3009–3018 | Cite as

In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides

  • Mihaela Silion
  • Doina Hritcu
  • Irina M. Jaba
  • Bogdan Tamba
  • Dunarea Ionescu
  • Ostin C. Mungiu
  • Ionel Marcel Popa
Article

Abstract

Ketoprofen (Ket) was intercalated into layered double hydroxides (ZnAlLDH and MgAlLDH) using the ionic exchange method. The drug intercalation was confirmed by X-ray diffraction (XRD) and FTIR spectroscopy. Ket release from the inorganic matrix was studied at pH 7.4 in continuous regime with a flow rate of 0.5 and respectively 1.0 ml/min. The kinetical data were interpreted using the Ritger and Peppas model. The data prove that the release kinetics and mechanism depend on the eluent flow rate. Quantification of gastric tolerance shows that the ulcerogenic effect of the intercalated drug is lower than the one of the raw Ket. The antinociceptive effect of both formulations was studied by the hot-plate method performed on mice. The MgAlLDH_Ket formulation shows a tendency towards a stronger antinociceptive effect than its ZnAlLDH_Ket counterpart during the 210 min recorded period.

Notes

Acknowledgments

This research was financially supported by the European Social Fund—„Cristofor I. Simionescu“ Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007–2013.

References

  1. 1.
    Heyneman CA, Lawless-Liday C, Wall GC. Oral versus topical NSAIDs in rheumatic disease: a comparison. Drugs. 2006;60:555–74.CrossRefGoogle Scholar
  2. 2.
    Marie RG. Epidemiology of nonsteroidal anti-inflammatory drug-associated gastrointestinal injury. Am J Med. 1998;104:23S.Google Scholar
  3. 3.
    Vueba ML, Pina ME, Veiga F, Sousa JJ, Batista de Carvalho LAE. Conformational study of ketoprofen by combined DFT calculations and Raman spectroscopy. Int J Pharm. 2006;307:56–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Kantor TG. Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy. 1986;6:93–103.PubMedGoogle Scholar
  5. 5.
    Marie RG. Nonsteroidal anti-inflammatory drugs: practical and theoretical considerations in their selection. Am J Med. 1996;100:31S.CrossRefGoogle Scholar
  6. 6.
    Savage RL, Moller PW, Ballantyne CL, Wells JE. Variation in the risk of peptic ulcer complications with nonsteroidal antiinflammatory drug therapy. Arthritis Rheum. 1993;36:84–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Babazadeh M. Synthesis and study of controlled release of ibuprofen from the new acrylic type polymers. Int J Pharm. 2006;316:68–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Bonina FP, Puglia C, Barbuzzi T, Caprariis PD, Palagiano F, Rimoli MG, Saija A. In vitro and in vivo evaluation of polyoxyethylene esters as dermal prodrugs of Ketoprofen, naproxen and diclofenac. Eur J Pharm Sci. 2001;14:123–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Costantino U, Ambrogi V, Nocchetti M, Perioli L. Hydrotalcite-like compounds: versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mater. 2008;107:16–149.CrossRefGoogle Scholar
  10. 10.
    Frunza M, Hritcu D, Popa MI. Intercalation of salicylic acid into ZnAl layered double hydroxides by ion-exchange and coprecipitation method. J Optoelectron Adv Mater. 2009;11:528–34.Google Scholar
  11. 11.
    Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. 2002;249:65–74.CrossRefGoogle Scholar
  12. 12.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.CrossRefPubMedGoogle Scholar
  13. 13.
    del Arco M, Gutiérrez S, Martín C, Rives V, Rocha J. Synthesis and characterisation of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflamatory (NSAID) drugs. J. Solid State Chem. 2004;177:3954–62.CrossRefADSGoogle Scholar
  14. 14.
    del Arco M, Cebadera E, Gutirrez S, Martin C, Montero MJ, Rives V, Rocha J, Sevilla MA. Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterisation and pharmacological study. J Pharm Sci. 2004;93:1649–58.CrossRefPubMedGoogle Scholar
  15. 15.
    del Arco M, Fernandez A, Martin C, Rives V. Release studies of different NSAIDs encapsulated in Mg, Al, Fe-hydrotalcites. Appl Clay Sci. 2009;42:538–44.CrossRefGoogle Scholar
  16. 16.
    Frunza M, Popa MI, Hulea V. Controlled release of salicylate from the lamella Zn-Al layered double hydroxide nanocomposite. J Optoelectron Adv Mater. 2007;9:3376–8.Google Scholar
  17. 17.
    Frunza M, Lisa G, Zonda R, Popa MI. Intercalation of Ketoprofen into Mg-Al hydrotalcites. Synthesis and characterization. Rev Chim-Bucharest. 2008;59:409–12.Google Scholar
  18. 18.
    Li B, He J, Evans DG, Duan X. Inorganic layered double hydroxides as a drug delivery systems intercalation and in vitro release of fenbufen. Appl Clay Sci. 2004;27:199–207.CrossRefGoogle Scholar
  19. 19.
    Silion M, Popa MI, Lisa G, Hritcu D. New hybrid compounds containing intercalated ciprofloxacin into layered double hydroxides: synthesis and characterization. Rev Roum Chim. 2008;53:827–31.Google Scholar
  20. 20.
    del Hoyo C. Layered double hydroxides and human health: an overview. Appl Clay Sci. 2007;36:103–21.CrossRefGoogle Scholar
  21. 21.
    Tarnawski AS, Ahluwalia A, Gandhi V, Deng X, Xiong X. Hydrotalcite protects aging gastric mucosa against NSAID- and ethanol-induced injury by preserving endothelial and progenitor cells. Underlying molecular mechanisms include activation of survivin and VEGF. Gastroenterology. 2010;138:S-721.CrossRefGoogle Scholar
  22. 22.
    Yu BP, Sun J, Li MQ, Luo HS, Yu JP. Preventive effect of hydrotalcite on gastric mucosal injury in rats induced by taurocholate. World J Gastroenterol. 2003;9:1427–30.PubMedGoogle Scholar
  23. 23.
    Carlino S. The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics. 1997;98:73–84.CrossRefGoogle Scholar
  24. 24.
    Silion M, Popa MI. Preparation and characterization of ketoprofen-layered double hydroxide compounds. J Optoelectron Adv Mater. in press 2010.Google Scholar
  25. 25.
    Beldie C, Dumitriu S, Aelenei N, Popa M, Popa MI, Bioactive DumitriuD, Polymers LX. Kinetics of delayed release neomycin-xanthan complex. Biomaterials. 1989;10:622–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Jaba IM, Ionescu D, Popa MI, Silion M, Tamba B, Mungiu OC. The analgesic effect and local tolerance of new anorganic nanohybrid systems with ketoprofen. InfoMedica. 2008;3:10–3.Google Scholar
  27. 27.
    Tuo B, Wen G, Wang X, Liu X, Dong H. Estrogen potentiates prostaglandin E2-stimulated duodenal mucosal bicarbonate secretion in mice. Gastroenterology. 2010;138:S-721.CrossRefGoogle Scholar
  28. 28.
    Krylova SG, Fomina TI, Efimova LA, Zueva EP, Khotimchenko MIu, Razina TG, Amosova EN, Lopatina KA, Khotimchenko IuS. Antiulcer effect of calcium pectate on model of chronic gastric ulcer in rats. Eksp Klin Farmakol. 2009;72:35–8.PubMedGoogle Scholar
  29. 29.
    Konturek SJ, Brzozowski T, Garlicki J, Majka J, Stachura J, Nauert C. Intragastric pH in the gastroprotective and ulcer-healing activity of aluminum-containing antacids. Digestion. 1991;49:140–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Carstens E. Quantitative experimental assessment of pain and hyperalgesia in animals and underlying neural mechanisms. In: Carli G, Zimmermann M, editors. Progress in Brain Research, vol 110. Amsterdam: Elsevier Science B.V. 1996. p. 17–31.Google Scholar
  31. 31.
    Derbyshire SWG. Assessing pain in animals. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G, Albright TD, Masland RH, Dallos P, Oertel D, Firestein S, Beauchamp GK, Bushnell MC, Kaas JH, Gardner Esther, editors. The senses: a comprehensive reference, vol. 5. Oxford: Elsevier Inc; 2008. p. 969–74.CrossRefGoogle Scholar
  32. 32.
    Williams M. Use of animal models for drug discovery. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2008. p. 1–7.Google Scholar
  33. 33.
    Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30:103–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Olanrewaju J, Newalkar BL, Mancino C, Komrneni S. Simplified synthesis of nitrate form of layered double hydroxide. Mater Lett. 2000;45:307–10.CrossRefGoogle Scholar
  35. 35.
    Xu ZP, Zeng HC. Sulfate-functionized carbon/metal-oxide nanocomposites from hydrotalcite-like compounds. Nano Lett. 2001;1:703–6.CrossRefADSGoogle Scholar
  36. 36.
    Xu ZP, Zeng HC. Abrupt structural transformation in hydrotalcite-like compounds Mg1−xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. J Phys Chem B. 2001;105:1743–9.CrossRefGoogle Scholar
  37. 37.
    del Arco M, Fernández A, Martín C, Rives V. Intercalation of mefenamic and meclofenamic acid anions in hydrotalcite-like matrices. Appl Clay Sci. 2007;36:133–40.CrossRefGoogle Scholar
  38. 38.
    Maestrelli F, Zerrouk N, Cirri M, Mennini N, Mura P. Microspheres for colonic delivery of ketoprofen-hydroxypropyl-β-cyclodextrin complex. Eur J Pharm Sci. 2008;34:1–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and application. Catal Today. 1991;11:173–301.CrossRefGoogle Scholar
  40. 40.
    Kanan S, Swamy CS. Synthesis and physicochemical characterization of cobalt aluminium hydrotalcite. J Mater Sci Lett. 1992;11:1585–7.CrossRefGoogle Scholar
  41. 41.
    Xu ZP, Zeng HC. Interconversion of brucite-like and hydrotalcite-like phases in cobalt hydroxide compounds. Chem Mater. 1999;11:67–74.CrossRefGoogle Scholar
  42. 42.
    Aelenei N, Popa MI, Novac O, Lisa G, Balaita L. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci Mater Med. 2009;20:1095–102.CrossRefPubMedGoogle Scholar
  43. 43.
    Dashevsky A, Mohamad A. Development of pulsatile multiparticulate drug delivery system coated with aqueous dispersion Aquacoat® ECD. Int J Pharm. 2006;318:124–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int J Pharm. 2007;28:49–56.CrossRefGoogle Scholar
  45. 45.
    Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM. Novel interpenetrating polymer microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym. 2007;69:678–87.CrossRefGoogle Scholar
  46. 46.
    Serra L, Domenech J, Peppas NA. Drug transport mechanisms and release kinetics from moleculary designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27:5440–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Ritger PL, Peppas NA. A simple equation for description of solide release. II. Fickian and anoumalous release from swellable devices. J Control Release. 1987;5:37–42.CrossRefGoogle Scholar
  48. 48.
    Lee WF, Jou LL. Effect of the intercalation agent content of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. J Appl Polym Sci. 2004;94:74–82.CrossRefGoogle Scholar
  49. 49.
    Costantino U, Casciola M, Massinelli L, Nocchetti M, Vivani R. Intercalation and grafting of hydrogen phosphates and phosphonates into synthetic hydrotalcites and a.c.-conductivity of the compounds thereby obtained. Solid States Ionics. 1997;97:203–12.CrossRefGoogle Scholar
  50. 50.
    Playle AC, Gumming SR, Llewellyn AF. The in vitro antacid and anti pepsin activity of hydrotalcite. Pharm Acta Helv. 1974;49:298–302.PubMedGoogle Scholar
  51. 51.
    Pawlaczyk J, Kokot Z, Rafinska A. In vitro study of the antipeptic activity of antacid preparations. Acta Pol Pharm. 1985;42:153–8.PubMedGoogle Scholar
  52. 52.
    Dreyer M, Marwinski D, Wolf N, Damman HG. Acid suppression profile of hydrotalcite in man. Arzneim-Forsch. 1991;41:738–41.Google Scholar
  53. 53.
    Tarnawski AS, Tomikawa M, Ohta M, Sarfeh IJ. Antacid talcid activates in gastric mucosa genes encoding for EGF and its receptor. The molecular basis for its ulcer healing action. J Physiol Paris. 2000;94:93–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mihaela Silion
    • 1
  • Doina Hritcu
    • 2
  • Irina M. Jaba
    • 3
  • Bogdan Tamba
    • 3
  • Dunarea Ionescu
    • 3
  • Ostin C. Mungiu
    • 3
  • Ionel Marcel Popa
    • 2
  1. 1.Petru Poni Institute of Macromolecular Chemistry IasiIasiRomania
  2. 2.Faculty of Chemical Engineering and Environmental ProtectionTechnical University Gh. AsachiIasiRomania
  3. 3.Center for the Study and Therapy of PainGr. T. Popa University of Medicine and Pharmacy IasiIasiRomania

Personalised recommendations