Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 11, pp 2947–2953 | Cite as

Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing

  • Uwe KlammertEmail author
  • Elke Vorndran
  • Tobias Reuther
  • Frank A. Müller
  • Katharina Zorn
  • Uwe Gbureck


Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg3(PO4)2) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20–40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2–7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.


3D powder printing Magnesium phosphate cement Struvite Bone replacement material 



The authors would like to acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG Gb1/11-1, DFG Mu1803/7-1 and DFG Kl2400/1-2).


  1. 1.
    Geros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;39:81–98.Google Scholar
  2. 2.
    Rosen HM, Ackermann JL. Porous block hydroxyapatite in orthognatic surgery. Angle Orthod. 1991;61:185–91.PubMedGoogle Scholar
  3. 3.
    Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Dorozhkin SV. Calcium orthophosphate cements for biomedical applications. J Mater Sci. 2008;43:3028–57.CrossRefADSGoogle Scholar
  5. 5.
    Hollier LH, Stal S. The use of hydroxyapatite cements in craniofacial surgery. Clin Plast Surg. 2004;31:423–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol. 2000;24:149–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Ashley S. Rapid prototyping for artificial body parts. Mech Eng (USA). 1993;115:50–3.Google Scholar
  8. 8.
    Peters F, Groisman D, Davids R, Hanel T, Durr H, Klein M. Comparative study of patient individual implants from beta-tricalcium phosphate made by different techniques based on CT data. Materialwissensch Werkstofftech. 2006;37:457.CrossRefGoogle Scholar
  9. 9.
    Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, Dos Santos Filho JH, Silva DN. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167–73.PubMedGoogle Scholar
  10. 10.
    Silva DN, de Oliveira MG, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Barbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg. 2008;36:443–9.PubMedGoogle Scholar
  11. 11.
    Gbureck U, Hölzel T, Klammert U, Würzler K, Müller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater. 2007;17:3940–5.CrossRefGoogle Scholar
  12. 12.
    Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U. 3D powder printing of β-Tricalcium phosphate ceramics using different strategies. Adv Eng Mater. 2008;10:B67–71.CrossRefGoogle Scholar
  13. 13.
    Klammert U, Reuther T, Jahn C, Kraski B, Kübler AC, Gbureck U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 2009;5:727–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122:173–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Vorndran E, Klammert U, Ewald A, Barralet JE, Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv Funct Mater. 2010;20:1585–91.CrossRefGoogle Scholar
  16. 16.
    Driessens FCM, Boltong MG, Wenz R, Meyer J. Calcium phosphates as fillers in struvite cements. Key Eng Mater. 2005;284–286:161–4.CrossRefGoogle Scholar
  17. 17.
    Hall DA, Stevens R, El Jazairi B. Effect of water content on the structure and mechanical properties of magnesia-phosphate cement mortar. J Am Ceram Soc. 1998;81:1550–6.CrossRefGoogle Scholar
  18. 18.
    Hipedinger NE, Scian AN, Aglietti EF. Magnesia-ammonium phosphate-bonded cordierite refractory castables: phase evolution on heating and mechanical properties. Cem Concr Res. 2004;34:157–64.CrossRefGoogle Scholar
  19. 19.
    Sarkar AK. Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J Mater Sci. 1991;26:2514–8.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Uwe Klammert
    • 1
    Email author
  • Elke Vorndran
    • 2
  • Tobias Reuther
    • 1
  • Frank A. Müller
    • 3
  • Katharina Zorn
    • 3
  • Uwe Gbureck
    • 2
  1. 1.Department of Cranio-Maxillo-Facial SurgeryUniversity of WürzburgWürzburgGermany
  2. 2.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany
  3. 3.Institute of Materials Science and Technology (IMT)Friedrich-Schiller-University of JenaJenaGermany

Personalised recommendations