Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 11, pp 2907–2913 | Cite as

Corrosion behaviour of β-Ti20Mo alloy in artificial saliva

  • Daniel Mareci
  • Romeu Chelariu
  • Ioan Dan
  • Doina-Margareta Gordin
  • Thierry Gloriant


To evaluate the potential of β-Ti20Mo alloy as a dental material, we tested its corrosion behaviour in artificial saliva in comparison to that of cp-Ti. Open-circuit potential (EOC), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used as electrochemical methods to characterize the corrosion behaviour of Ti20Mo alloy and cp-Ti, respectively. Corrosion current and passive current densities obtained from the polarization curves showed low values indicating a typical passive behaviour for Ti20Mo alloy. The EIS technique enabled us to study the nature of the passive film formed on the binary Ti20Mo alloy at various imposed potentials. The Bode phase spectra obtained for Ti20Mo alloy in artificial saliva exhibited two-time constants at higher potential (0.5 V, 1.0 V), indicating a two-layer structure. According to our experimental measurements, Ti20Mo alloy appears to possess superior corrosion resistance to that of cp-Ti in artificial saliva.


Electrochemical Impedance Spectroscopy Passive Film Potentiodynamic Polarization Corrosion Current Density Artificial Saliva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williams DF. Biocompatibility of clinical implant materials. In: Williams DF, editor. Biocompatibility of clinical implant materials, vol.1. Boca Raton: CRC Press; 1981. p. 9–44.Google Scholar
  2. 2.
    Kovacs P, Davidson JA. Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the materials and biological issues. ASTM STP 1272. West Chonshohocken: ASTM; 1996. p. 163–78.CrossRefGoogle Scholar
  3. 3.
    Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta. 1996;141:1143–53.CrossRefGoogle Scholar
  4. 4.
    Gonzalez JEG, Mirza Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109–15.CrossRefGoogle Scholar
  5. 5.
    Long MJ, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 1998;19:1621–39.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim HS, Lim SH, Yeo ID, Kim WY. Stress-induced martensitic transformation of metastable β-titanium alloy. Mater Sci Eng A. 2007;449–451:322–5.Google Scholar
  7. 7.
    Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–9.CrossRefGoogle Scholar
  8. 8.
    Raman V, Nagarajan S, Rajendran N. Electrochemical impedance spectroscopic characterisation of passive film formed over β Ti–29Nb–13Ta–4.6 Zr alloy. Electrochem Comm. 2006;8:1309–14.CrossRefGoogle Scholar
  9. 9.
    Lee TM. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4 V in Hank/EDTA solution. J Mater Sci Mater Med. 2006;17:15–27.CrossRefPubMedGoogle Scholar
  10. 10.
    Mareci D, Ungureanu G, Aelenei D, Mirza Rosca JC. Electrochemical characteristics of titanium based biomaterials in artificial saliva. Mater Corros. 2007;11:848–56.CrossRefGoogle Scholar
  11. 11.
    Metikos-Hukovic M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24:3765–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Milosev I, Metikos-Hukovic M, Strehblow HH. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials. 2000;21:2103–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Milosev I, Kosec T, Strehblow HH. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim Acta. 2008;53:3547–58.CrossRefGoogle Scholar
  14. 14.
    Elias CN, Oshida Y, Cavalcante Lima JH, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Van Noort R. Titanium: the implant material of today. J Mater Sci. 1987;22:3801–11.CrossRefADSGoogle Scholar
  16. 16.
    Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243:231–6.CrossRefGoogle Scholar
  17. 17.
    Kim TI, Han JH, Lee IS, Lee KH, Shin MC, Choi BB. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and citotoxicity. Biomed Mater Eng. 1997;7:253–63.PubMedGoogle Scholar
  18. 18.
    Khan MA, Williams RL, Williams DF. In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Okazaki Y, Ito Y, Kyo K, Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng A. 1996;213:138–47.CrossRefGoogle Scholar
  20. 20.
    Rao S, Okazaki Y, Tateishi T, Ushida T, Ito Y. Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3–E1 cells. Mater Sci Eng C. 1997;4:311–4.CrossRefGoogle Scholar
  21. 21.
    Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Tech Adv Mater. 2003;4:445–54.CrossRefGoogle Scholar
  22. 22.
    He G, Eckert J, Dai QL, Sui ML, Loser W, Hagiwara M, Ma E. Nanostructured Ti-based multi-component alloys with potential for biomedical applications. Biomaterials. 2003;24:5115–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Ho WF, Ju CP, Chern Lin JH. Structure and properties of cast binary Ti–Mo alloys. Biomaterials. 1999;20:2115–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Godley R, Starosvetsky D, Gotman I. Corrosion behaviour of a low modulus β-Ti-45%Nb alloy for use in medical implants. J Mater Sci Mater Med. 2006;17:63–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Cremasco A, Osorio WR, Freire CMA, Garcia A, Caram R. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses. Electrochim Acta. 2008;53:4867–74.CrossRefGoogle Scholar
  26. 26.
    Cai Z, Koike M, Sato H, Brezner M, Guo Q, Komatsu M, Okuno O, Okabe T. Electrochemical characterization of cast Ti-Hf binary alloys. Acta Biomater. 2005;1:353–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Gordin DM, Delvat E, Chelariu R, Ungureanu G, Besse M, Laille D, Gloriant T. Characterization of Ti-Ta alloys synthesized by cold crucible levitation melting. Adv Eng Mater. 2008;10:714–9.CrossRefGoogle Scholar
  28. 28.
    Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Alvez Rezende MCR, Rosifini Alvez AP, Codaro EN, Matsumoto Dutra CA. Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. J Mater Sci Mater Med. 2007;18:149–54.CrossRefGoogle Scholar
  30. 30.
    Oliveira NTC, Gustaldi AC. Electrochemical behaviour of Ti-Mo alloys applied as biomaterial. Corros Sci. 2008;50:938–45.CrossRefGoogle Scholar
  31. 31.
    Oliveira NTC, Gustaldi AC. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405.CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar S, Sankara Narayanan TSN. Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent. 2008;36:500–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Bartáková S, Prachár P, Kudrman J, Březina V, Podhorná B, Černochová P, Vaněk J, Strecha J. New titanium β-alloys for dental implantology and their laboratory-based assays of biocompatibility. Scr Medica. 2009;82:76–82.Google Scholar
  34. 34.
    Holland RI. Corrosion testing by potentiodynamic polarization in various electrolytes. Dent Mater. 1992;8:241–5.CrossRefPubMedGoogle Scholar
  35. 35.
    McCabe JF. Applied dental materials. 7th ed. Oxford: Blackwell Science; 1990.Google Scholar
  36. 36.
    Gloriant T, Texier F, Prima G, Laillé D, Gordin DM, Thibon I, Ansel D. Synthesis and phase transformations of beta metastable Ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements. Adv Eng Mater. 2006;8–10:961–5.CrossRefGoogle Scholar
  37. 37.
    Fusayama T, Katayori T, Nomoto S. Corrosion of gold and amalgam placed in contact with each other. J Dent Res. 1963;42:1183–97.PubMedGoogle Scholar
  38. 38.
    Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J Mater Sci Mater Med. 1998;9:567–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheng X, Roscoe SG. Corrosion behaviour of titanium in the presence of calcium phosphate and serum proteins. Biomaterials. 2005;26:7350–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6Al-4 V alloy immersed in a simulated plasma solution. J Biomed Mater Res A. 2007;81:531–43.PubMedGoogle Scholar
  41. 41.
    Raistrick ID, MacDonald JR, Francschetti DR. Impedance Spectroscopy Emphasizing Solid Materials and Systems. New York: Wiley; 1987.Google Scholar
  42. 42.
    Lavos-Valereto IC, Wolynec S, Ramires I, Guastaldi AC, Costa I. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti6Al7Nb alloy in Hank′s solution. J Mater Sci Mater Med. 2004;15:55–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daniel Mareci
    • 1
  • Romeu Chelariu
    • 2
  • Ioan Dan
    • 3
  • Doina-Margareta Gordin
    • 4
  • Thierry Gloriant
    • 4
  1. 1.Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental ProtectionIasiRomania
  2. 2.Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and EngineeringIasiRomania
  3. 3.R&D Consultanta si ServiciiBucharestRomania
  4. 4.INSA Rennes, UMR CNRS 6226 Sciences Chimiques de Rennes/Chimie-Métallurgie 20 avenue des Buttes de CoesmesRennes CedexFrance

Personalised recommendations