Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 9, pp 2543–2549 | Cite as

Synthesis and characterization of HAp nanorods from a cationic surfactant template method

  • J. M. Coelho
  • J. Agostinho Moreira
  • A. Almeida
  • F. J. Monteiro


Hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] nanorods were synthesized using a surfactant templating method, with cetyltrimethylammonium bromide (CTAB) micelles acting as template for HAp growth. The effects of the sintering temperature on the morphological and crystallographic characteristics and on chemical composition of the “as-prepared” structures are discussed. The experimental results show that low heat-treatment temperatures are preferred in order to obtain high quality nanorods, with diameters ranging between 20 and 50 nm. High heat-treatment temperatures enhance the thermal decomposition of HAp into other calcium phosphate compounds, and the sintering of particles into micrometer ball-like structures. The stability of aqueous suspensions of HAp nanorods is also discussed.


Raman Spectrum Calcium Phosphate Raman Band Sinter Temperature Increase Dicalcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rao CNR, Cheetham AK. Materials science at the nanoscale. In: Gogotsi Y, editor. Nanomaterials handbook. New York: CRC Press, Taylor & Francis Group; 2006. p. 1–2.Google Scholar
  2. 2.
    Guo Y, Shi D, Lian J, Wang ZDW, Cho H, Liu G, et al. Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 2008;19:175102 (6 pp).Google Scholar
  3. 3.
    Queiroz AC, Teixeira S, Santos JD, Monteiro FJ. Production of porous hydroxyapatite with potential for controlled drug delivery. Mater Sci Forum. 2004;455–456:358–60.CrossRefGoogle Scholar
  4. 4.
    Vallet-Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;2:97–108.CrossRefGoogle Scholar
  5. 5.
    Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int. 2002;41:3130–46.CrossRefGoogle Scholar
  6. 6.
    Ferraz MP, Monteiro FJ, Manuel CM. Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2004;2:74–80.PubMedGoogle Scholar
  7. 7.
    Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimi A. Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf A Physichochem Eng Aspects. 2008;322:29–33.CrossRefGoogle Scholar
  8. 8.
    Ying JY, Mehnert PC, Wong MS. Synthesis and application of supramolecular-templated mesoporous materials. Angew Chem Int Ed. 1999;38:56–77.CrossRefGoogle Scholar
  9. 9.
    Cates ME, Fielding SM. Rheology of giant micelles. Adv Phys. 2006;55:799–879.CrossRefADSGoogle Scholar
  10. 10.
    Nagarajan R. Molecular thermodynamics of giant micelles. In: Zana R, Kaler EW, editors. Giant micelles—properties and applications. New York: CRC Pess, Taylor & Francis Group; 2007. p. 2–5.Google Scholar
  11. 11.
    Li Y, Tjandra W, Tam KC. Synthesis of nanoporous hydroxyapatite using cationic surfactants as templates. Mater Res Bull. 2008;43:2318–26.CrossRefGoogle Scholar
  12. 12.
    Yao J, Tjandra W, Chen YZ, Tam KC, Mab J, Soh B. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J Mater Chem. 2003;13:3053–7.CrossRefGoogle Scholar
  13. 13.
    Berret JF. Rheology of wormlike micelles: equilibrium properties and shear banding transition. In: Weiss RG, Terech P, editors. Molecular gels. Materials with self-assembled fibrillar networks. Dordrecht: Springer; 2006. p. 667–720.Google Scholar
  14. 14.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.CrossRefADSGoogle Scholar
  15. 15.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.CrossRefGoogle Scholar
  16. 16.
    Li YY, Li J, Nakajima B. Nanostructured porous biomaterials for controlled drug release systems. In: Paul KC, Xuanyong L, editors. Biomaterials-fabrication and processing. New York: CRC Press, Taylor & Francis Group; 2008. p. 196–206.CrossRefGoogle Scholar
  17. 17.
    Herzberg G. The infrared and Raman spectra of poliatomic molecules. New York: D van Nostrand Company, Inc.; 1945.Google Scholar
  18. 18.
    Awonusi A, Morris MD, Tecklenburg MMJ. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int. 2007;81:46–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.CrossRefGoogle Scholar
  20. 20.
    Aza PN, Santos C, Pazo A, Aza S, Cuscó R, Artus L. Vibrational properties of calcium phospate coumpounds. 1. Raman spectrum of β-tricalcium phosphate. Chem Mater. 1997;9:912–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. M. Coelho
    • 1
  • J. Agostinho Moreira
    • 1
  • A. Almeida
    • 1
  • F. J. Monteiro
    • 2
    • 3
  1. 1. IFIMUP and IN—Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Laboratório de BiomateriaisINEB—Instituto de Engenharia BiomédicaPortoPortugal
  3. 3.Departamento de Engenharia Metalúrgica e Materiais, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations