Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts

  • I. Rajzer
  • O. CastañoEmail author
  • E. Engel
  • J. A. Planell


In this work a calcium phosphate (CPC)/polymer blend was developed with the advantage of being moldable and capable of in situ setting to form calcium deficient hydroxyapatite under physiological conditions in an aqueous environment at body temperature. The CPC paste consists in a mix of R cement, glycerol as a liquid phase carrier and a biodegradable hydrogel such as Polyvinyl alcohol, which acts as a binder. Microstructure and mechanical analysis shows that the CPC blend can be used as an injectable implant for low loaded applications and fast adsorption requirements. The storage for commercial distribution was also evaluated and the properties of the materials obtained do not significantly change during storage at −18°C.


Compressive Strength Immersion Time Cement Paste Calcium Phosphate Cement Cement Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish Ministry of Education and Science, project “Estancias de jovenes doctores extranjeros en universidades publicas y centros de investigacion españoles” 2007–2008. O. Castano also acknowledges the MICINN for the Ramony Cajal contract.


  1. 1.
    Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications Part II: precipitate formation during setting reactions. J Mater Sci. 1999;10:177–83.Google Scholar
  2. 2.
    Xu HHK, Carey LE, Simon CG Jr, Takagi S, Chow LC. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater. 2007;23:433–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Ginebra MP, Driessens FCM, Planell JA. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials. 2004;25:3453–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D, Lopez Cabarcos E, Barralet JE. Brushite-collagen composites for bone regeneration. Acta Biomater. 2008;4:1315–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications Part I: solution chemistry. J Mater Sci. 1999;10:169–76.Google Scholar
  6. 6.
    Carey LE, Xu HHK, Simon CG Jr, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials. 2005;26:5002–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Takagi S, Chow LC. Self-setting calcium phosphate cement and methods for preparing and using them. US Patent 5525148. 1996.Google Scholar
  8. 8.
    Xu HHK, Quinn JB, Takagi S, Chow LC. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials. 2004;25:1029–37.CrossRefPubMedGoogle Scholar
  9. 9.
    Ginebra MP, Fernandez E, De Maeyerl EAP, Verbeeckl RMH, Boltong MG, Ginebra J, Driessens FCM, Planell JA. Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res. 1997;76(4):905–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Takagi S, Chow LC, Hirayama S, Eichmiller FC. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater. 2003;19:797–804.CrossRefPubMedGoogle Scholar
  11. 11.
    Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promotors to calcium phosphate cements. Biomaterials. 1999;20:393–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Khairoun I, Boltong MG, Driessens FCM, Planell JA. Effect of calcium carbonate on the compliance of an apatitic calcium phosphate bone cement. Biomaterials. 1997;18:1535–9.PubMedGoogle Scholar
  13. 13.
    Xu HHK, Burguera EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials. 2007;28:3786–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Habib M, Baroud G, Gitzhofer F, Bohner M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008;4:1465–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu HHK, Takagi S, Sun L, Hussain L, Chow LC, Guthrie WF, Yen JH. Development of nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J Am Dent Assoc. 2006;137:1131–8.PubMedGoogle Scholar
  16. 16.
    Xu HHK, Weir MD, Simon CG. Injectable and strong nano-apatite scaffolds for cell/grow factor delivery and bone regeneration. Dent Mater. 2008;24:1212–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Komath M, Varma HK. Development of fully injectable calcium phosphate cement for orthopedic and dental application. Bull Mater Sci. 2003;26:415–22.CrossRefGoogle Scholar
  20. 20.
    Sun L, Xu HHK, Takagi S, Chow LC. Fast setting calcium phosphate cement-chitosan composite: mechanical properties and dissolution rates. J Biomater Appl. 2007;21:299–312.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu HHK, Weir MD, Burguera EF, Fraser AM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials. 2006;27:4279–87.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2006;2:557–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Costa V, Costa H, Vasconcelos WL. Preparation of hybrid biomaterials for bone tissue engineering. Mater Res. 2007;10(1):21–6.Google Scholar
  24. 24.
    Ishikawa K, Takagi S, Chow LC, Ishikawa Y, Eanes ED. Behavior of a calcium phosphate cement in simulated blood plasma in vitro. Dent Mater. 1994;10:26–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Driessens FCM, Boltong MG, De Maeyer EAP, Wenz R, Nies B, Planell JA. The Ca/P range of nanoapatitic calcium phosphate cements. Biomaterials. 2002;23:4011–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci. 2001;12:135–9.Google Scholar
  27. 27.
    Sanzana ES, Navarro M, Macule F, Suso S, Planell JA. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008;4:1924–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Takagi S. Rapid-hardering calcium phosphate cement compositions. US Patent 7294187. 2007.Google Scholar
  29. 29.
    ASTM Standard C266, “Standard test method for time of setting of hydraulic-cement paste by gillmore needles,” ASTM International; West Conshohocken, 2008. doi: 10.1520/C0266-08.
  30. 30.
    Ginebra MP, Delgado JA, Harr I, Almirall A, Del Valle S, Planell JA. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J Biomed Mater Res A 2006:351-361.Google Scholar
  31. 31.
    Mestres G, Castaño O, Navarro M, Almirall A, Sanzana ES, Ginebra MP, Planell JA. A novel hybrid calcium phosphate/ACP injectable cement. World Biomaterials Congress 2008. p. P432.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • I. Rajzer
    • 1
    • 3
  • O. Castaño
    • 1
    • 2
    Email author
  • E. Engel
    • 1
    • 4
  • J. A. Planell
    • 1
    • 2
  1. 1.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Networking Research Centre on Bioengineering, Biomaterials and NanomedicineCIBER-BBNBarcelonaSpain
  3. 3.Department of Polymer MaterialsATH, University of Bielsko-Biala, Institute of Textile Engineering and Polymer MaterialsBielsko-BiałaPoland
  4. 4.Technical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations