Fiber scaffolds of polysialic acid via electrospinning for peripheral nerve regeneration

  • Ulrike Assmann
  • Andreas Szentivanyi
  • Yvonne Stark
  • Thomas Scheper
  • Silke Berski
  • Gerald Dräger
  • Robert H. SchusterEmail author


Fiber scaffolds of bioactive polysialic acid have been prepared via electrospinning for peripheral nerve regeneration. The diameter, morphology and alignment of fibers in scaffolds were adjusted by variation of electrospinning parameters, which are decisive for the cell-scaffold interaction. Due to the high water solubility of polysialic acid (poly-α-2,8-N-acetylneuraminic acid) a photoactive derivative (poly-α-2,8-N-pentenoylneuraminic acid) was used to obtain stable fiber scaffolds in water by photochemical crosslinking. At the optimized fiber scaffolds good cell viability and directed cell proliferation along the fibers was achieved by cell tests with immortalized Schwann cells.


Fiber Diameter Electrospun Fiber Electrospinning Process Polyethylene Oxide Peripheral Nerve Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by DFG (Deutschen Forschungsgemeinschaft) and arose within the research group (FOR 548, “Polysialic acid: Towards the evaluation of a new bio-identical scaffold material”). Helpful discussions with Stefanie Böhm and Cornelia Kasper (Institut für Technische Chemie, Universität Hannover) are grateful acknowledged.


  1. 1.
    Kreis T, Vale R. Guidebook to the extracellular matrix, anchor, and adhesion proteins. 2nd ed. New York: Oxford University Press; 1999.Google Scholar
  2. 2.
    Norman JJ, Desai TA. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng. 2006;34:89–101.CrossRefPubMedGoogle Scholar
  3. 3.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Sell S, Barnes C, Smith M, McClure M, Madutantakam P, Grant J, et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetric nanofibers. Polym Int. 2007;56:1349–60.CrossRefGoogle Scholar
  5. 5.
    Sill TJ, von Recum HA. Electro spinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.CrossRefPubMedGoogle Scholar
  6. 6.
    van Blitterswijk C. Tissue engineering. 1st ed. London: Elsevier; 2008.Google Scholar
  7. 7.
    Evans GRD. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263:396–404.CrossRefPubMedGoogle Scholar
  8. 8.
    Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 2007;28:3012–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Bini TB, Gao S, Tan TC, Wang S, Lim A, Hai LB, et al. Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology. 2004;15:1459–64.CrossRefADSGoogle Scholar
  11. 11.
    Jungnick J, Brämera C, Bronzlika P, Lipokatic-Takacsa E, Weinhold B, Gerardy-Schahn R, et al. Level and localization of polysialic acid is critical for early peripheral nerve regeneration. Mol Cell Neurosci. 2009;40:374–81.CrossRefGoogle Scholar
  12. 12.
    Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A. Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci. 2006;36:10888–98.CrossRefGoogle Scholar
  13. 13.
    Brusés JL, Rutishauser U. Roles, regulation, and mechanism of polysialic acid function during neural development. Biochimie. 2001;83:635–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R, Hildebrandt H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol. 2003;23:5908–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Doycheva M, Petrova E, Stamenova R, Tsvetanov C, Riess G. UV-induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng. 2004;289:676–80.CrossRefGoogle Scholar
  16. 16.
    Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.CrossRefGoogle Scholar
  17. 17.
    Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res. 2006;36:333–68.CrossRefADSGoogle Scholar
  18. 18.
    Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–106.CrossRefPubMedADSGoogle Scholar
  19. 19.
    Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46:3372–84.CrossRefGoogle Scholar
  20. 20.
    Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531–47.CrossRefADSGoogle Scholar
  21. 21.
    Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–92.CrossRefGoogle Scholar
  22. 22.
    Taylor G. Disintegration of water drops in electric field. Proc R Soc Lond. 1964;280:383–97.zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Wang YK, Yong T, Ramakrishna S. Nanofibres and their influence on cells for tissue regeneration. Aust J Chem. 2005;58:704–12.CrossRefGoogle Scholar
  24. 24.
    Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3:1167–71.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ulrike Assmann
    • 1
  • Andreas Szentivanyi
    • 2
  • Yvonne Stark
    • 3
  • Thomas Scheper
    • 3
  • Silke Berski
    • 4
  • Gerald Dräger
    • 4
  • Robert H. Schuster
    • 1
    Email author
  1. 1.Deutsches Institut für Kautschuktechnologie e.V.HannoverGermany
  2. 2.Institut für MehrphasenprozesseUniversität HannoverHannoverGermany
  3. 3.Institut für Technische ChemieUniversität HannoverHannoverGermany
  4. 4.Institut für Organische ChemieUniversität HannoverHannoverGermany

Personalised recommendations