In vitro biocompatibility and corrosion resistance of a new implant titanium base alloy

  • E. Vasilescu
  • P. Drob
  • D. Raducanu
  • V. D. Cojocaru
  • I. Cinca
  • D. Iordachescu
  • R. Ion
  • M. Popa
  • C. Vasilescu


One objective of this work was to study the corrosion resistance of the new implant Ti–10Zr–5Ta–5Nb alloy in physiological fluids of different pH values, simulating the extreme functional conditions. Another objective was in vitro biocompatibility evaluation of the new alloy using human fetal osteoblast cell line hFOB 1.19. Cytocompatibility was assessed by determination of possible material cytotoxic effects, cell morphology and cell adhesion. The thermo-mechanical processing of the new implant alloy consisted in plastic deformation (almost 90%) performed by hot rolling accompanied by an initial and final heat treatment. The new Ti–10Zr–5Ta–5Nb alloy presented self-passivation, with a large passive potential range and low passive current densities, namely, a very good anticorrosive resistance in Ringer solution of acid, neutral and alkaline pH values. Cell viability was not affected by the alloy substrate presence and a very good compatibility was noticed.


  1. 1.
    Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausama J, Kasemo B. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci. 1997;8:653–65.Google Scholar
  2. 2.
    Kim H-K, Jang J-W. Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J Mater Sci. 2004;15:825–30.Google Scholar
  3. 3.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49:155–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Briem D, Strametz S, Schroder K, Meenen NM, Lechmann W, Linhart W, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci. 2005;16:671–7.Google Scholar
  5. 5.
    Mendes SC, Tibbe JM, Veenhof M, Both S, Oner FC, Van Blitterswijk CA, et al. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci. 2004;15:1123–8.Google Scholar
  6. 6.
    Miyamoto S, Teramoto H, Coso QA, Gutkind JS, Burbelo PD, Akiyama SK, et al. Integrin function: molecular hierarchies of cytoskeletal and signalling molecules. J Cell Biol. 1995;131:791–805.CrossRefPubMedGoogle Scholar
  7. 7.
    Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J. 1999;339:481–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Schneider GB, Zaharia R, Stanford C. Osteoblast integrin adhesion and signalling regulate mineralization. J Dent Res. 2001;80:1540–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Souto RM, Burstein GT. A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro. J Mater Sci. 1996;7:337–43.Google Scholar
  10. 10.
    Spriano S, Bronzoni M, Verne E, Maina G, Bergo V, Windler M. Characterization of surface modified Ti-6Al-7Nb alloy. J Mater Sci. 2005;16:301–12.Google Scholar
  11. 11.
    Martins DQ, Osorio WR, Souza EP, Caram R, Garcia A. Effects of Zr content on microstructure and corrosion resistance of Ti-30Nb-Zr casting alloys for biomedical applications. Electrochim Acta. 2008;53:2809–17.CrossRefGoogle Scholar
  12. 12.
    Geetha M, Kamachi Mudali U, Gogia AK, Asokamani RE, Raj B. Influence of microstructure and alloying elements on corrosion behaviour of Ti-13Nb-13Zr alloy. Corros Sci. 2004;46:877–92.CrossRefGoogle Scholar
  13. 13.
    Lavos-Valereto IC, Wolynec S, Ramires I, Guastaldi AC, Costa I. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti-6Al-7Nb alloy in Hank’s solution. J Mater Sci. 2004;15:55–9.Google Scholar
  14. 14.
    Yu SY, Scully JR. Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys. Corrosion 1997;53:965–76.CrossRefGoogle Scholar
  15. 15.
    Gutierrez A, Lopez MF, Jimenez JA, Morant C, Paszti R, Climent A. Surface characterization of the oxide layer grown on Ti-Nb-Zr and Ti-Nb-Al alloys. Surf Interface Anal. 2004;36:977–80.CrossRefGoogle Scholar
  16. 16.
    Zhecheva A, Malino S, Tha W. Surface gas nitrating of Ti-6Al-4 V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys. Z Metallkd. 2003;94:19–24.Google Scholar
  17. 17.
    Trentani L, Pelillo F, Pavesi FC, Ceciliani L, Cetta G, Forlino A. Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblast and osteoblasts. Biomaterials. 2002;23:2863–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Nag S, Banerjee R, Stechschulte J, Fraser HL. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. J Mater Sci. 2005;16:679–85.Google Scholar
  19. 19.
    Lopez MF, Gutierrez JA, Jimenez JA. In vitro corrosion behaviour of titanium alloys without vanadium. Electrochim Acta. 2002;47:1359–64.CrossRefGoogle Scholar
  20. 20.
    Eisenbarth E, Velten D, Mueller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 2004;25:5705–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Okazaki Y, Nishimura E, Nakada H, Kobaiashi K. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia. Biomaterials. 2001;22:599–607.CrossRefADSGoogle Scholar
  22. 22.
    Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical application. Curr Opin Solid St M. 2001;5:45–53.CrossRefGoogle Scholar
  23. 23.
    Lopez MF, Jimenez JA, Gutierrez A. Corrosion study of surface modified vanadium free titanium alloys. Electrochim Acta. 2003;48:1395–401.CrossRefGoogle Scholar
  24. 24.
    Khan MA, Williams RL, Williams DF. In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Assis SL, Costa I. Electrochemical evaluation of Ti-13Nb-13Zr, Ti-6Al-4 V and Ti-6Al-7Nb alloys for biomedical application by long-term immersion tests. Mater Corros. 2007;58:329–33.CrossRefGoogle Scholar
  26. 26.
    Lopez MF, Soriano L, Palomares FJ, Sanchez-Agudo M, Fuentes GG, Gutierrez A, et al. Soft X-ray absorption spectroscopy study of oxide layers on titanium alloys. Surf Interface Anal. 2002;33:570–6.CrossRefGoogle Scholar
  27. 27.
    Morant C, Lopez MF, Gutierrez A, Jimenez JA. AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials. Appl Surf Sci. 2003;220:79–87.CrossRefADSGoogle Scholar
  28. 28.
    Tamilselvi S, Rajendran N. In vitro corrosion behaviour of Ti-5Al-2Nb-1Ta alloy in Hank’s solution. Mater Corros. 2007;58:285–9.CrossRefGoogle Scholar
  29. 29.
    Robin A, Meirelis JP. Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4 V and Ti-23Ta alloys in artificial saliva. Mater Corros. 2007;58:173–80.CrossRefGoogle Scholar
  30. 30.
    Cai Z, Nakajima N, Woldu M, Berglund A, Bergmon M, Okabe T. In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials. 1999;20:183–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Gluszek J, Masalski J, Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solutions. Biomaterials 1997;18:789–94.CrossRefPubMedGoogle Scholar
  32. 32.
    Popa MV, Demetrescu I, Vasilescu E, Drob P, Santana Lopez A, Mirza-Rosca J, et al. Corrosion susceptibility of implant materials Ti-5Al-4 V and Ti-6Al-4Fe in artificial extra-cellular fluids. Electrochim Acta. 2004;49:2113–9.CrossRefGoogle Scholar
  33. 33.
    Popa MV, Demetrescu I, Suh S-H, Vasilescu E, Drob P, Ionita D, et al. Monitoring of titanium base alloys−biofluids interface. Bioelectrochemistry. 2007;71:126–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Popa MV, Vasilescu E, Drob P, Vasilescu C, Demetrescu I, Ionita D. Long-term assessment of the implant titanium material–artificial saliva interface. J Mater Sci. 2008;19:1–9.Google Scholar
  35. 35.
    Vasilescu E, Drob P, Raducanu D, Dan I, Vasilescu C. Corrosion resistance of some thermo-mechanical treated titanium bioalloy depending on pH of Ringer solution. Rev Chim. (Bucharest). 2009;60:241–7.Google Scholar
  36. 36.
    Van Kesteren IEH. Product designers’ information needs in materials selection. Mater Des. 2008;29:133–45.Google Scholar
  37. 37.
    Elias LM, Schneider SG, Schneider S, Silva HM, Malvisi F. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mat Sci Eng A-Struct. 2006;432:108–12.CrossRefGoogle Scholar
  38. 38.
    Li S, Xiong B, Hui S, Ye W, Yu Y. Comparison of the fatigue and fracture of Ti–6Al–2Zr–1Mo–1V with lamellar and bimodal microstructures. Mat Sci Eng A Struct. 2007;460–461:140–5.CrossRefGoogle Scholar
  39. 39.
    Kima HS, Limb SH, Yeo ID, Kima WY. Stress-induced martensitic transformation of metastable-titanium alloy. Mat Sci Eng A-Struct. 2007;449–451:322–5.CrossRefGoogle Scholar
  40. 40.
    Popa MV, Raducanu D, Vasilescu E, Drob P, Cojocaru VD, Vasilescu C, et al. Mechanical and corrosion behaviour of a Ti-Al-Nb alloy after deformation at elevated temperatures. Mater Corros. 2008;59:919–28.CrossRefGoogle Scholar
  41. 41.
    Gordin DM, Gloriant T, Texier G, Thibon I, Ansel D, Duval JL, et al. Development of a β-type Ti-12Mo-5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects. J Mater Sci. 2004;15:885–91.Google Scholar
  42. 42.
    Bastos AC, Somoes AM, Gonzalez S, Gonzalez-Garcia Y, Souto RM. Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electron microscope. Electrochem Commun. 2004;6:1212–5.CrossRefGoogle Scholar
  43. 43.
    Souto RM, Laz MM, Reis RL. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials. 2003;24:4213–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Houston, TX: NACE;1974. p. 213–221, 223–229, 246–250 and 251–255.Google Scholar
  45. 45.
    ISO TR 10271:2001, Dental metallic materials – Corrosion test methods.Google Scholar
  46. 46.
    Thomson NG, Buchanan RA, Lemons JE. In vitro corrosion of Ti-6Al-4 V and type 316L stainless steel when gallvanically coupled with carbon. J Biomed Mater Res. 1979;13:35–44.CrossRefGoogle Scholar
  47. 47.
    Shlaby LA. Galvanic coupling of Ti with Cu and Al alloys in chloride media. Corros Sci. 1971;11:767–78.CrossRefGoogle Scholar
  48. 48.
    Guo OK, Du M, Zhou CJ. Study of galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater. In: Proceedings of 16th International Corrosion. 1–8, September 2005, Beijing, China, Ed. International Corrosion Council, paper 11–3.Google Scholar
  49. 49.
    Thian S, Huang J, Best SM, Barber ZH, Brooks RA, Rushton N, et al. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials. 2006;27:2692–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Prado Da Silva MH, Soares GDA, Elias CN, Best SM, Gibson IR, Di Silvio L, et al. In vitro cellular response of titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness. J Mater Sci. 2003;14:511–9.Google Scholar
  51. 51.
    Navarro M, Ginebra MP, Planell JA. Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res. A. 2004;67:1009–15.Google Scholar
  52. 52.
    Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell. 1992;69:11–25.CrossRefPubMedGoogle Scholar
  53. 53.
    Giancotti FG, Ruoslahti E. Integrin signals. Science. 1999;285:1028–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Rea SM, Brooks RA, Schneider A, Best SM, Bonfield W. Osteoblast-like cell response to bioactive composites-surface-topography and composition effects. J Biomed Mater Res. B. 2004;70:250–61.CrossRefGoogle Scholar
  55. 55.
    Milosev I, Kosec T, Strehblow H-H. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank’s physiological solution. Electrochim Acta. 2008;53:3547–58.CrossRefGoogle Scholar
  56. 56.
    Black J. Biological performance of materials: fundamentals of biocompatibility. New York: Decker M Inc; 1992.Google Scholar
  57. 57.
    Blackwood DJ, Chua AWC, Seah KHW, Thampuran R, Teoh SH. Corrosion behaviour of porous titanium-graphite composites designed for surgical implants. Corros Sci. 2003;42:481–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Vasilescu
    • 1
  • P. Drob
    • 1
  • D. Raducanu
    • 2
  • V. D. Cojocaru
    • 2
  • I. Cinca
    • 2
  • D. Iordachescu
    • 3
  • R. Ion
    • 3
  • M. Popa
    • 1
  • C. Vasilescu
    • 1
  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  2. 2.Faculty of Material Science and EngineeringPolitehnica UniversityBucharestRomania
  3. 3.Department of Biochemistry and Molecular BiologyBucharest UniversityBucharestRomania

Personalised recommendations