Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility

Article

Abstract

In this study, an electro-spun co-polymer PLGA/PCL blend was fabricated using various percentages of PLGA in the blend PLGA/PCL solutions. The PLGA/PCL ratios used to fabricate the electrospun fibrous mats were reflected in the FT-IR (Fourier Transform Infrared Spectroscopy) data. Experimental results from the MTT assay showed that the biocompatibility of the electro-spun co-polymer increased at increasing percentages of PLGA. In vitro cells adhesion and proliferation of fibroblast cells on electro-spun mats were characterized by SEM morphology. In addition, we found that increasing PLGA concentrations affected the mechanical properties of electro-spun membranes and increased the biocompatibility of PLGA/PCL electro-spun fibrous mats.

References

  1. 1.
    Vunjak-Novakovic G, Freshney R. Culture of cells for tissue engineering. New York: Wiley; 2006.Google Scholar
  2. 2.
    Rickne A. Swedish possibilities within tissue engineering and regenerative medicine. VINNOVA—Swedish Governmental Agency for innovation systems/Verket för Innovations system; 2009.Google Scholar
  3. 3.
    Segvich S, Kohn DH. Biological interactions on materials surfaces understanding and controlling protein, cell, and tissue responses. New York: Springer; 2009.Google Scholar
  4. 4.
    Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev. 2008;60:215–28.CrossRefPubMedGoogle Scholar
  5. 5.
    Supaphol P, Chuangchote S. On the electrospinning of poly(vinyl alcohol) nanofiber mats: a revisit. J Appl Polym Sci. 2008;108:969–78.CrossRefGoogle Scholar
  6. 6.
    Agarwal S, Wendorff JH, Greiner A. Use of electro-spinning technique for biomedical applications. Polymer. 2008;49:5603–21.CrossRefGoogle Scholar
  7. 7.
    Tan EPS, Ng SY, Lim CT. Tensile testing of a single ultrafine polymeric fiber. Biomaterials. 2005;26:1453–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. J Eur Polym. 2006;42:2013–22.CrossRefGoogle Scholar
  9. 9.
    Vaz CM, Tuijil SV, Bouten CVC, Baaijens FPT. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim C. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electro-spinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Bini TB, Gao S, Tan TC, Wang S, Lim A, Hai LB, et al. Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology. 2004;15:1459–64.CrossRefADSGoogle Scholar
  13. 13.
    Bajgai MP, Aryal S, Bhattarai SR, Bahadur KCR, Kim KW, Kim HY. Polycaprolactone grated dextran biodegradable electrospun matrix: a novel for tissue engineering. J Appl Polym Sci. 2008;108:1447–54.CrossRefGoogle Scholar
  14. 14.
    Tang ZG, Callaghan JT, Hunt JA. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Biomaterials. 2005;26:6618–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim JY, Cho DW. Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng. 2009;86:1447–50.CrossRefGoogle Scholar
  16. 16.
    Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly(3-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6:1961–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B. 2006;78B:283–90.CrossRefGoogle Scholar
  18. 18.
    Li WJ, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(a-hydroxyester)-based nanofibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Curran JM, Tang Z, Hunt JA. PLGA doping of PCL affects the plastic potential of human mesenchymal stem cells, both in the presence and absence of biological stimuli. J Biomed Mater Res A. 2008. doi:10.1002/jbm.a.31966.
  20. 20.
    Tang ZG, Hunt JA. The effect of PLGA doping of polycaprolactone films on the control of osteoblast adhesion and proliferation in vitro. Biomaterials. 2006;27:4409–18.CrossRefPubMedGoogle Scholar
  21. 21.
    Khil MS, Shanta RB, Kim HY, Kim SZ, Lee KH. Novel fabricated matrix via electrospinning for tissue engineering. J Biomed Mater Res. 2005;72B:117–24.CrossRefGoogle Scholar
  22. 22.
    Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261–72.CrossRefGoogle Scholar
  23. 23.
    Karakecili AG, Satriano C, Gümüşderelioğlu M, Marletta G. Enhancement of fibroblastic proliferation on chitosan surfaces by immobilized epidermal growth factor. Acta Biomater. 2008;4:989–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Jay W, Calvert KGM, Lisa C, Prashant NK, Paul AD, Lee EW. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J Biomed Mater Res. 2000;52A:279–84.Google Scholar
  25. 25.
    Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(caprolactone) nonwoven mats via electrospinning. Polymer. 2003;44:1287–94.CrossRefGoogle Scholar
  26. 26.
    Li Y, Huang Z, Lu Y. Electro-spinning of nylon-6,66,1010 terpolymer. Eur Polym J. 2006;42:1696–704.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Materials, College of MedicineSoonchunhyang UniversityCheonanKorea

Personalised recommendations