Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces

  • Raechelle A. D’Sa
  • George A. Burke
  • Brian J. MeenanEmail author


Selective control of cellular response to polymeric biomaterials is an important consideration for many ocular implant applications. In particular, there is often a need to have one surface of an ophthalmic implant capable of promoting cell attachment while the other needs to be resistant to this effect. In this study, an atmospheric pressure dielectric barrier discharge (DBD) has been used to modify the surface region of poly(methyl methacrylate) (PMMA), a well established ocular biomaterial, with the aim of promoting a controlled response to human lens epithelial cells (LEC) cultured thereon. The DBD plasma discharge environment has also been employed to chemically graft a layer of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto the PMMA and the response to LEC likewise determined. Two different molecular weights of PEGMA, namely 1000 and 2000 MW were used in these experiments. The LEC response to DBD treated polystyrene (PS) samples has also been examined as a positive control and to help to further elucidate the nature of the modified surfaces. The LEC adhered and proliferated readily on the DBD treated PMMA and PS surfaces when compared to the pristine polymer samples which showed little or no cell response. The PMMA and PS surfaces that had been DBD grafted with the PEGMA1000 layer were found to have some adhered cells. However, on closer inspection, these cells were clearly on the verge of detaching. In the case of the PEGMA2000 grafted surfaces no cells were observed indicating that the higher molecular weight PEGMA has been able to attain a surface conformation that is capable of resisting cell attachment in vitro.


PMMA Dielectric Barrier Discharge Intraocular Lens Lens Epithelial Cell Actin Stress Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Dr. G. Mahon, Department of Ophthalmology, Queen’s University Belfast, UK for provision of the lens epithelial cell line. R. A. D. acknowledges the University of Ulster for the award of a Vice-chancellors postgraduate studentship.


  1. 1.
    Lloyd AW, Faragher RG, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22(8):769–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis. Curr Opin Ophthalmol. 2005;16(4):246–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Hicks CR, Fitton JH, Chirila TV, Crawford GJ, Constable IJ. Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol. 1997;42(2):175–89.CrossRefPubMedGoogle Scholar
  4. 4.
    Patel S, Thakar RG, Wong J, McLeod SD, Li S. Control of cell adhesion on poly(methyl methacrylate). Biomaterials. 2006;27(14):2890–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim MK, Park IS, Park HD, Wee WR, Lee JH, Park KD, et al. Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion. In vitro and in vivo study. J Cataract Refract Surg. 2001;27(5):766–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Spalton DJ. Posterior capsular opacification after cataract surgery. Eye. 1999;13(Pt 3b):489–92.PubMedGoogle Scholar
  7. 7.
    Nishi O. Posterior capsule opacification. Part 1. Experimental investigations. J Cataract Refract Surg. 1999;25(1):106–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Schauersberger J, Amon A, Kruger A, Abela C, Schild G, Kolodjaschna J. Lens epithelial cell outgrowth on 3 types of intraocular lenses. J Cataract Refract Surg. 2001;27(6):850–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Graefes Arch Clin Exp Ophthalmol. 2006;34(6):568–74.Google Scholar
  10. 10.
    Tognetto D, Toto L, Sanguinetti G, Cecchini P, Vattovani O, Filacorda S, et al. Lens epithelial cell reaction after implantation of different intraocular lens materials: two-year results of a randomized prospective trial. Ophthalmology. 2003;110(10):1935–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Doan KT, Olson RJ, Mamalis N. Survey of intraocular lens material and design. Curr Opin Ophthalmol. 2002;13(1):24–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Matsushima H, Iwamoto H, Mukai K, Katsuki Y, Nagata M, Senoo T. Preventing secondary cataract and anterior capsule contraction by modification of intraocular lenses. Expert Rev Med Devices. 2008;5(2):197–207.CrossRefPubMedGoogle Scholar
  13. 13.
    Lampin M, Warocquier C, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36(1):99–108.CrossRefPubMedGoogle Scholar
  14. 14.
    Mitchell SA, Davidson MR, Bradley RH. Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interface Sci. 2005;281(1):122–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R. 2002;36(5-6):143–206.CrossRefGoogle Scholar
  16. 16.
    Hubbell JA. Surface treatment of polymers for biocompatibility. Annu Rev Mater Sci. 1996;26:365–94.CrossRefADSGoogle Scholar
  17. 17.
    Kingshott P, Thissen H, Griesser HJ. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials. 2002;23(9):2043–56.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee JH, Lee HB, Andrade JD. Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci. 1995;20(6):1043–79.CrossRefGoogle Scholar
  19. 19.
    Harris JM. Poly(ethylene glycol) chemistry. New York: Plenum; 1992.Google Scholar
  20. 20.
    Kingshott P, Griesser HJ. Surfaces that resist bioadhesion. Curr Opin Solid State Mater Sci. 1999;4(4):403–12.CrossRefGoogle Scholar
  21. 21.
    Michel R, Pasche S, Textor M, Castner DG. Influence of PEG architecture on protein adsorption and conformation. Langmuir. 2005;21(26):12327–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen H, Zhang Z, Chen Y, Brook MA, Sheardown H. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials. 2005;26(15):2391–9.CrossRefPubMedGoogle Scholar
  23. 23.
    D’Sa RA, Meenan BJ. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing. Langmuir. 2010;24(3):1894–903.CrossRefGoogle Scholar
  24. 24.
    Uyama Y, Kato K, Ikada Y. Surface modification of polymers by grafting. Adv Polym Sci. 1998;137:1–39.CrossRefGoogle Scholar
  25. 25.
    Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y. Polymer surface with graft chains. Prog Polym Sci. 2003;28(2):209–59.CrossRefGoogle Scholar
  26. 26.
    Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci. 2000;25(5):677–710.CrossRefGoogle Scholar
  27. 27.
    Wang P, Tan KL, Kang ET, Neoh KG. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J Memb Sci. 2002;195(1):103–14.CrossRefGoogle Scholar
  28. 28.
    Liu C, Brown NMD, Meenan BJ. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface. Appl Surf Sci. 2006;252(6):2297–310.CrossRefADSGoogle Scholar
  29. 29.
    Liu C, Brown NMD, Meenan BJ. Statistical analysis of the effect of dielectric barrier discharge (DBD) operating parameters on the surface processing of poly(methylmethacrylate) film. Surf Sci. 2005;575(3):273–86.CrossRefADSGoogle Scholar
  30. 30.
    Liu C, Cui N, Brown NMD, Meenan BJ. Effects of DBD plasma operating parameters on the polymer surface modification. Surf Coat Technol. 2004;185(2–3):311–20.CrossRefGoogle Scholar
  31. 31.
    Upadhyay DJ, Cui NY, Meenan BJ, Brown NMD. The effect of dielectric barrier discharge configuration on the surface modification of aromatic polymers. J Phys D Appl Phys. 2005;38(6):922–9.CrossRefADSGoogle Scholar
  32. 32.
    Borcia G, Anderson CA, Brown NMD. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II. Appl Surf Sci. 2004;225(1–4):186–97.CrossRefADSGoogle Scholar
  33. 33.
    Borcia G, Anderson CA, Brown NMD. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Appl Surf Sci. 2004;221(1–4):203–14.CrossRefADSGoogle Scholar
  34. 34.
    Cui NY, Upadhyay DJ, Anderson CA, Meenan BJ, Brown NMD. Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement. Appl Surf Sci. 2007;253(8):3865–71.CrossRefADSGoogle Scholar
  35. 35.
    Evans MDM, Pavon-Djavid G, Hélary G, Legeais JM, Migonney V. Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. J Biomed Mater Res A. 2004;69A(3):469–76.CrossRefGoogle Scholar
  36. 36.
    Weber GF, Menko AS. Actin filament organization regulates the induction of lens cell differentiation and survival. Dev Biol. 2006;295(2):714–29.CrossRefPubMedGoogle Scholar
  37. 37.
    Yan Q, Perdue N, Sage EH. Differential responses of human lens epithelial cells to intraocular lenses in vitro: hydrophobic acrylic versus PMMA or silicone discs. Graefes Arch Clin Exp Ophthalmol. 2005;243(12):1253–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Wiesner S, Legate KR, Fassler R. Integrin–actin interactions. Cell Mol Life Sci. 2005;62(10):1081–99.CrossRefPubMedGoogle Scholar
  39. 39.
    Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell–cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol. 1996;134(2):549–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995;131(3):791–805.CrossRefPubMedGoogle Scholar
  41. 41.
    Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, et al. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem. 1995;270(25):15398–402.CrossRefPubMedGoogle Scholar
  42. 42.
    Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, et al. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem. 1994;269(20):14738–45.PubMedGoogle Scholar
  43. 43.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005;280(12):11626–34.CrossRefPubMedGoogle Scholar
  45. 45.
    Andrade JD, Hlady V. Vroman effects, techniques, and philosophies. J Biomater Sci Polym Ed. 1991;2:161–72.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raechelle A. D’Sa
    • 1
  • George A. Burke
    • 1
  • Brian J. Meenan
    • 1
    Email author
  1. 1.Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), School of EngineeringUniversity of UlsterNewtownabbeyNorthern Ireland

Personalised recommendations