Mechanical strength of extrusion freeformed calcium phosphate filaments

  • H. Y. Yang
  • X. P. Chi
  • S. Yang
  • J. R. G. Evans
Article

Abstract

Hydroxyapatite–tricalcium phosphate mixtures of various compositions were extruded by a solid freeforming process to form lattice structures to serve as hard tissue scaffolds. The unwelded filaments, sintered at temperatures from 1100 to 1300°C, had radii from 115 to 135 μm and were tested in three point flexural loading using a purpose-built fixture. Flexural strength ranged from 20 to 100 MPa depending on composition and sintering temperature. Weibull moduli up to 13 were obtained. Compositions with 50% or more tri-calcium phosphate did not develop strengths much above 40 MPa and the strength of most compositions fell when the sintering temperature exceeded 1250°C. Multiple layer lattice structures were created and tested in compression.

References

  1. 1.
    Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. Eur Spine J. 2009;18:783–99.CrossRefPubMedGoogle Scholar
  2. 2.
    Bauer TW. An overview of the histology of skeletal substitute materials. Arch Pathol Lab Med. 2007;131:217–24.PubMedGoogle Scholar
  3. 3.
    Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009;6:S341–8.PubMedGoogle Scholar
  4. 4.
    Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J Biomed Mater Res. 2000;50:27–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Ebaretonbofa E, Evans JRG. High porosity foam scaffolds for bone substitute. J Porous Mater. 2002;9:257–63.CrossRefGoogle Scholar
  6. 6.
    Tay BY, Evans JRG, Edirisinghe MJ. Solid freeform fabrication of ceramics. Int Mater Rev. 2003;48:341–70.CrossRefGoogle Scholar
  7. 7.
    Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II: rapid prototyping techniques. Tissue Eng. 2002;8:1–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Mott M, Evans JRG. Zirconia/alumina functionally graded material made by inkjet printing. Mater Sci Eng A. 1999;271:344–52.CrossRefGoogle Scholar
  9. 9.
    Yang S, Mohebi MM, Evans JRG. A novel solid freeforming methodusing simultaneous part and mould construction. Rapid Prototyp J. 2008;14:35–43.CrossRefGoogle Scholar
  10. 10.
    Chu TMG, Halloran JW, Hollister SJ, Feinberg SE. Hydroxyapatite implants with designed internal architecture. J Mater Sci. 2001;12:471–8.Google Scholar
  11. 11.
    Peltola SM, Melchels FPW, Grijpma DW, Kellomki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Leukers B, Gülkan H, Irsen S, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci. 2005;16:1121–4.Google Scholar
  13. 13.
    Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth SC. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. J Am Ceram Soc. 2000;83:1663–9.CrossRefGoogle Scholar
  15. 15.
    Greul M, Lenk R. Near-net-shape ceramic and composite parts by multiphase jet solidification (MJS). Ind Ceram. 2000;20:115–7.Google Scholar
  16. 16.
    Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA. Directed colloidal assembly of 3D periodic structures. Adv Mater. 2002;14:1279–83.CrossRefGoogle Scholar
  17. 17.
    Fujita R, Yokoyama A, Kawasaki T, Kohgo T. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. J Oral Maxillofac Surg. 2003;61:1045–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Peter B, Pioletti DP, Laib S, Bujoli B, Pilet P, Janvier P, et al. Calcuim phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36:52–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu HS, Chin TS, Lai LS, Chiu SY, Chung KH, Chang CS, et al. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram Int. 1997;23:19–25.CrossRefGoogle Scholar
  20. 20.
    Toriyama M, Ravaglioli A, Krajewski A, Celotti G, Piancastelli A. Synthesis of hydroxyapatite-based powders by mechanico-chemical method and their sintering. J Eur Ceram Soc. 1996;16:429–36.CrossRefGoogle Scholar
  21. 21.
    Yang HY, Chi XP, Yang S, Evans JRG. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater Des. 2008;29:1802–9.Google Scholar
  22. 22.
    Gibson LJ, Ashby M. Cellular solids: structure and properties. Cambridge, UK: Cambridge University Press; 1999. p. 175–231.Google Scholar
  23. 23.
    Rahaman MN. Ceramic processing and sintering. New York: Marcel Dekker; 2003. p. 486.Google Scholar
  24. 24.
    Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, et al. Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J Eur Ceram Soc. 2008;28:159–67.CrossRefGoogle Scholar
  25. 25.
    Liu D-M. Preparation and characterization of porous hydroxyapatite bioceramic via a slip casting route. Ceram Int. 1998;24:441–6.CrossRefGoogle Scholar
  26. 26.
    Davidge RW. Mechanical behaviour of ceramics. Cambridge, UK: Cambridge University Press; 1980. p. 49.Google Scholar
  27. 27.
    Brown WF, Srawley JE. Plane strain crack toughness testing of high strength metallic materials. PA, USA: ASTM Spec. Tech. publ. No.410, ASTM; 1966. p 13.Google Scholar
  28. 28.
    Zyman ZZ, Ivanov IG, Glushko VI. Possibilities for strengthening hydroxapatite ceramics. J Biomed Mater Res. 1999;46:73–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Raynaud S, Champion E, Lafon JP, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials. 2002;23:1081–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Rice RW. Mechanisms of toughening in ceramic matrix composites. Ceram Eng Sci Proc. 1981;2:661–701.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • H. Y. Yang
    • 1
  • X. P. Chi
    • 1
  • S. Yang
    • 1
  • J. R. G. Evans
    • 2
  1. 1.Department of Materials, Queen MaryUniversity of LondonLondonUK
  2. 2.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations