In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery

  • Sumanta K. Sahu
  • Sanjay K. Mallick
  • Susmita Santra
  • Tapas K. Maiti
  • Sudip K. Ghosh
  • Panchanan Pramanik


The development of smart targeted nanoparticle that can deliver drugs to direct cancer cells, introduces better efficacy and lower toxicity for treatment. We report the development and characterizations of pH-sensitive carboxymethyl chitosan modified folic acid nanoparticles and manifest their feasibility as an effective targeted drug delivery vehicle. The nanoparticles have been synthesized from carboxymethyl chitosan with covalently bonded bifunctional 2,2′-(ethylenedioxy)-bis-(ethylamine) (EDBE) through the conjugation with folic acid. The conjugation has been analyzed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The resultant nanoparticles with an average size less then 200 nm measured by dynamic light scattering and transmission electron microscopy. Confocal microscopy and flow cytometric analysis have revealed that folate-mediated targeting significantly enhances the cellular uptake of the nanoparticle and thus facilitates apoptosis of cancer cells (HeLa, B16F1). For the application of the nanoparticles as a drug carrier, Doxorubicin a potent anticancer drug has been loaded into the nanoparticles, with the drug loading amount and the drug release pattern observed.



The authors express gratefulness to the Department of Biotechnology, Government of India for funding and Indian Institute of Technology, Kharagpur for execution of these studies. Acknowledgements are also due to FIST program, DST, Govt. of India for Confocal microscope facility, and Central Research Facility.


  1. 1.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–98.CrossRefPubMedGoogle Scholar
  2. 2.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.CrossRefPubMedGoogle Scholar
  3. 3.
    Marin RV, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials. 2005;26:5414–26.CrossRefGoogle Scholar
  4. 4.
    Marinakos SM, Anderson MF, Ryan JA, Martin LD, Feldheim DL. Encapsulation, permeability, and cellular uptake characteristics of hollow nanometer-sized conductive polymer capsules. J Phys Chem B. 2001;105:8872–6.CrossRefGoogle Scholar
  5. 5.
    Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.CrossRefPubMedGoogle Scholar
  6. 6.
    Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17:2950–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Breunig M, Bauer S, Goepferich A. Polymers and nanoparticles: intelligent tools for intracellular targeting. Eur J Pharm Biopharm. 2008;68:112–28.CrossRefPubMedGoogle Scholar
  9. 9.
    Brannon-Peppas L, Blanchester JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.CrossRefPubMedGoogle Scholar
  10. 10.
    Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release. 2003;93:151–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, et al. Paclitaxel-loaded poly(g-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27:2051–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Sheikh FA, Barakat NAM, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly (epsilon-caprolactone)-grafted-poly (vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci: Mater Med. 2009;20:821–31.CrossRefGoogle Scholar
  13. 13.
    Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–84.CrossRefGoogle Scholar
  15. 15.
    Yinsong W, Lingrong L, Jian W, Zhang Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modiWed O-carboxymethyl chitosan conjugates. Carbohydr Polym. 2007;69:597–606.CrossRefGoogle Scholar
  16. 16.
    Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VRJ, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52:3396–401.PubMedGoogle Scholar
  17. 17.
    Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor- mediated endocytosis. J Biol Chem. 1994;269:3198–204.PubMedGoogle Scholar
  18. 18.
    Guo W, Hinkle GH, Lee RJ. Folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med. 1999;40:1563–9.PubMedGoogle Scholar
  19. 19.
    Van Steenis JH, Van Maarseveen EM, Verbaan FJ, Verrijk R, Crommelin DJA. Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes. J Control Release. 2003;87:167–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Dauty E, Remy JS, Zuber G, Behr JP. Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjug Chem. 2002;13:831–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Aronov O, Horowitz AT, Gabizon A, Gibson D. Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro Studies. Bioconjug Chem. 2003;14:563–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Hattori Y, Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release. 2004;97:173–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Ishida T, Kirchmeier MJ, Moase EH, Zalipsky S, Allen TM. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta. 2001;1515:144–58.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang Y, Jiang JS, Du B, Gan ZF, Qian M, Zhang P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J Mater Sci: Mater Med. 2009;20:301–7.CrossRefGoogle Scholar
  26. 26.
    Minkoa T, Batrakovab EV, Lib S, Lib Y, Pakunlua RI, Alakhovc VY, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release. 2005;105:269–78.CrossRefGoogle Scholar
  27. 27.
    Wang Y, Bansal V, Zelikin AN, Frank C. Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano Lett. 2008;8:1741–5.CrossRefPubMedADSGoogle Scholar
  28. 28.
    Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumors. Int J Hyperth. 1995;11:211–6.CrossRefGoogle Scholar
  29. 29.
    Ojugo ASE, Mesheehy PMJ, McIntyre DJO, McCoy C, Stubbs M, Leach MO, et al. Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed. 1999;12:495–504.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Sluis R, Bhujwalla ZM, Ballerteros P, Alverez J, Cerdan S, Galons JP, et al. In vivo imaging of extracellular pH using 1H MSRI. Magn Reson Med. 1999;41:743–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28:2915–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Park JS, Han TH, Lee KY, Han SS, Hwang JJ, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 2006;115:37–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:773–800.CrossRefGoogle Scholar
  34. 34.
    Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P. Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology. 2007;18:385102–11.CrossRefADSGoogle Scholar
  35. 35.
    Das M, Mishra D, Maiti TK, Basak A, Pramanik P. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology. 2008;19:415101–15.CrossRefGoogle Scholar
  36. 36.
    Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym. 2003;53:355–9.CrossRefGoogle Scholar
  37. 37.
    Gabizon A, Horowitz AT, Goren D, Tzemach D, Shavit FM, Qazen MM, et al. Targeting folate receptor with folate linked to extremities of poly (ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem. 1999;10:289–98.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang Z, Lee SH, Feng SS. Folate-decorated poly (lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials. 2007;28:1889–99.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sumanta K. Sahu
    • 1
  • Sanjay K. Mallick
    • 2
  • Susmita Santra
    • 1
  • Tapas K. Maiti
    • 2
  • Sudip K. Ghosh
    • 2
  • Panchanan Pramanik
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpur, W. BIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyKharagpur, W. BIndia

Personalised recommendations