In vitro astrocyte and cerebral endothelial cell response to electrospun poly(ε-caprolactone) mats of different architecture

  • Silvia Baiguera
  • Costantino Del Gaudio
  • Lara Fioravanzo
  • Alessandra Bianco
  • Mauro Grigioni
  • Marcella Folin
Article
  • 202 Downloads

Abstract

This work focuses on the evaluation of the potential use of electrospun poly(ε-caprolactone) (PCL) micrometric and/or sub-micrometric fibrous membranes for rat hippocampal astrocyte (HA) and rat cerebro-microvascular endothelial cell (CEC) cultures. Both mats supported cell adhesion, proliferation, cellular phenotype and spreading. Microfibrous mats allowed cellular infiltration, while both HAs and CECs were unable to migrate within the sub-micrometric fibrous mat, leaving an acellularized inner region. This finding was correlated to the presence of larger voids within electrospun PCL microfibrous mats, suggesting that the morphology should be accurately selected for the realization of a cell environment-mimicking mat. Based on our results, the proper fiber architecture can be regarded as a crucial issue to be considered in order to deal with suitable polymeric mats tailored for specific in vitro application.

References

  1. 1.
    Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl. 2007;46(30):5670–703.CrossRefPubMedGoogle Scholar
  2. 2.
    Del Gaudio C, Bianco A, Folin M, Baiguera S, Grigioni M. Structural characterisation and cell response evaluation of electrospun PCL membranes: micrometric vs sub-micrometric fibers. J Biomed Mater Res A. 2009;89(4):1028–39.PubMedGoogle Scholar
  3. 3.
    Cucullo L, Aumayr B, Rapp E, Janigro D. Drug delivery and in vitro models of the blood-brain barrier. Curr Opin Drug Discov Devel. 2005;8(1):89–99.PubMedGoogle Scholar
  4. 4.
    Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol. 2004;56(4):468–77.CrossRefPubMedGoogle Scholar
  6. 6.
    van der FM, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, et al. Vascular endothelial growth factor and blood–brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J. 2004;23(7):608–13.Google Scholar
  7. 7.
    Lee SW, Kim WJ, Park JA, Choi YK, Kwon YW, Kim KW. Blood–brain barrier interfaces and brain tumors. Arch Pharm Res. 2006;29(4):265–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Cipolla MJ, Crete R, Vitullo L, Rix RD. Transcellular transport as a mechanism of blood–brain barrier disruption during stroke. Front Biosci. 2004;9:777–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl. 2006;96:444–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Kalaria RN. The blood–brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev. 1992;4(3):226–60.PubMedGoogle Scholar
  11. 11.
    Minagar A, Alexander JS. Blood–brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9(6):540–9.CrossRefPubMedGoogle Scholar
  12. 12.
    McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85(3):890–902.CrossRefPubMedGoogle Scholar
  13. 13.
    Conconi MT, Lora S, Baiguera S, Boscolo E, Folin M, Scienza R, et al. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A. 2004;71(4):669–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Design. 2006;12(36):4751–70.CrossRefGoogle Scholar
  15. 15.
    Chiarini A, Dal Pra I, Menapace L, Pacchiana R, Whitfield JF, Armato U. Soluble amyloid b-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes. Int J Mol Med. 2005;16:801–7.PubMedGoogle Scholar
  16. 16.
    Gerardo-Nava J, Führmann T, Klinkhammer K, Seiler N, Mey J, Klee D, et al. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomed. 2009;4(1):11–30.CrossRefGoogle Scholar
  17. 17.
    Brynda E, Houska M, Kysilka J, Prádný M, Lesný P, Jendelová P, et al. Surface modification of hydrogels based on poly(2-hydroxyethyl methacrylate) with extracellular matrix proteins. J Mater Sci Mater Med. 2009;20(4):909–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu C, Yang F, Wang S, Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A. 2004;71(1):154–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Chung TW, Liu DZ, Wang SS. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale Biomaterials. 2003;24(25):4655–61.Google Scholar
  20. 20.
    Thapa A, Webster TJ, Haberstroh KM. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J Biomed Mater Res A. 2003;67(4):1374–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing; 2005.CrossRefGoogle Scholar
  22. 22.
    Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polymer. J. 2005;41:409–21.CrossRefGoogle Scholar
  23. 23.
    Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 2005;26(18):3929–39.CrossRefPubMedGoogle Scholar
  24. 24.
    Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extarcellular matrix for smooth muscle cells and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, et al. Electrospun polyphosphazene nanofibers for in rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80(3):661–8.PubMedGoogle Scholar
  26. 26.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72(1):156–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Pham QP, Sharma U, Mikos AG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–805.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Silvia Baiguera
    • 1
  • Costantino Del Gaudio
    • 2
  • Lara Fioravanzo
    • 1
  • Alessandra Bianco
    • 2
  • Mauro Grigioni
    • 3
  • Marcella Folin
    • 1
  1. 1.Dipartimento di BiologiaUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Scienze e Tecnologie Chimiche, INSTM Research Unit Tor VergataUniversità di Roma “Tor Vergata”RomeItaly
  3. 3.Istituto Superiore di SanitàLaboratorio di Ingegneria BiomedicaRomeItaly

Personalised recommendations