In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires

  • Carlos SuárezEmail author
  • Teresa Vilar
  • Javier Gil
  • Pablo Sevilla


The objective of the article is to study surface topographic changes and nickel release in lingual orthodontic archwires in vitro. Stainless steel (SS), nickel–titanium (NiTi) and copper–nickel–titanium (CuNiTi) lingual orthodontic archwires were studied using atomic absorption spectrometry for nickel release after immersion in a saline solution. Surface roughness changes were measured using atomic force microscopy. Differences between groups were analyzed using independent sample t-tests. Statistically significant changes in roughness were seen in all archwires except NiTi. Surface changes were most severe in the CuNiTi alloy. SS archwires released the highest amount of nickel. In conclusion, only roughness changes in CuNiTi archwires seemed to be clinically significant. The amount of nickel released for all archwires tested is below the levels known to cause cell damage.


Atomic Force Microscopy Hydrogen Embrittlement Orthodontic Appliance NiTi Wire Cobalt Nickel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present study was funded through a research grant of the Universitat de Barcelona (Facultat d’Odontologia). We would like to acknowledge the help provided in the Universitat Politècnica de Catalunya by Dr. José María Manero and Fernando Villar in obtaining the images for the present study. The photo in Fig. 1 was kindly donated by Dr. A. Hayes (St Louis, MO, USA). We are especially grateful to Dr. Gregory Stylianos Antonarakis from the Division of Orthodontics of the Université de Genève for proof reading this manuscript.


  1. 1.
    Daems J, Celis JP, Willems G. Morphological characterization of as-received and in vivo orthodontic stainless steel archwires. Eur J Orthod. 2009;31:260–5.CrossRefPubMedGoogle Scholar
  2. 2.
    McCann HC. Inorganic components of salivary secretions. In: Harris RS, editor. Art and science of dental caries research. New York: Academic Press; 1968. p. 55–70.Google Scholar
  3. 3.
    Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. Am J Orthod Dentofac Orthop. 2005;127:662–9.CrossRefGoogle Scholar
  4. 4.
    Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J. Degradation in performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0% acidulated phosphate fluoride solution. Angle Orthod. 2004;74:487–95.PubMedGoogle Scholar
  5. 5.
    Yokohama K, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai J. Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials. 2005;26:101–8.CrossRefGoogle Scholar
  6. 6.
    Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontic wires. Biomaterials. 2004;25:4535–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Ogawa T, Yokoyama K, Asaoka K, Sakai J. Hydrogen absorption behavior of beta-titanium alloy in acid fluoride solutions. Biomaterials. 2004;25:2419–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagumo M. Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials. 2003;24:2113–20.CrossRefPubMedGoogle Scholar
  9. 9.
    House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances-should we care? Am J Orthod Dentofac Orthop. 2008;133:584–92.CrossRefGoogle Scholar
  10. 10.
    Verstrynge A, van Humbeeck J, Willems G. In vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofac Orthop. 2006;130:460–70.CrossRefGoogle Scholar
  11. 11.
    Kim H, Johnson JW. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod. 1999;69:39–44.PubMedGoogle Scholar
  12. 12.
    Pereira MC, Pereira ML, Sousa JP. Histological effects of iron accumulation on mice liver and spleen after administration of a metallic solution. Biomaterials. 1999;20:2193–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Bourauel C, Fries T, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod. 1998;20:79–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgeat B. Galvanic corrosion between orthodontic wires and brackets in flouride mouthwashes. Eur J Orthod. 2006;28:298–304.CrossRefPubMedGoogle Scholar
  15. 15.
    Oh K-T, Kim K-N. Ion release and cytotoxicity of stainless steel wires. Eur J Orthod. 2005;27:533–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer-Brandies H, Es-Souni M, Kock N, Raetzke K, Bock O. Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016×0.022″ NiTi archwires. J Orofac Orthop. 2003;64:88–99.CrossRefPubMedGoogle Scholar
  17. 17.
    McKay GC, Macnair R, MacDonald C, Grant MH. Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials. 1996;17:1339–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Kerosuo H, Kullaa A, Kerosuo E, Kanerva L, Hensten-Petterson A. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. Am J Orthod Dentofac Orthop. 1996;109:148–54.CrossRefGoogle Scholar
  19. 19.
    Berger-Gorbet M, Broxup B, Rivard C, Yahia L’H. Biocompatibility testing of Ni–Ti screw using immuno histochemistry on sections containing metallic implants. J Biomed Mater Res. 1996;32:243–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Bass JK, Fine H, Cisnero CJ. Nickel hypersensitivity in the prosthodontics patient. Am J Orthod Dentofac Orthop. 1993;103:280–5.CrossRefGoogle Scholar
  21. 21.
    Grimsdottir MR, Hensten-Pettersen A, Kulmann A. Proliferation of nickel sensitive human lymphocytes by corrosion products of orthodontic appliances. Biomaterials. 1994;15:1157–60.CrossRefPubMedGoogle Scholar
  22. 22.
    International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risk of chemicals to humans. Lyon, France: IARC; 1996.Google Scholar
  23. 23.
    Zhou D, Salnikow K, Costa M. Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res. 1998;58:2182–9.PubMedGoogle Scholar
  24. 24.
    Salnikow K, Gao M, Voitkun V, Huang X, Costa M. Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res. 1994;24:6407–12.Google Scholar
  25. 25.
    Grimsdottir MR, Hensten-Pettersen A, Kulmann A. Cytotoxic effect of orthodontic appliances. Eur J Orthod. 1992;14:47–53.PubMedGoogle Scholar
  26. 26.
    Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res. 1997;35:451–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwaninger B, Sarkar NK, Foster BE. Effect of long-term immersion corrosion on the flexural properties of nitinol. Am J Orthod. 1982;82:45–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Kurz C, Swartz ML, Andreiko C. Lingual orthodontics: a status report. Part 2: research and development. J Clin Orthod. 1982;16:735–40.PubMedGoogle Scholar
  29. 29.
    Fujita K. New orthodontic treatment with lingual bracket and mushroom archwire appliance. Am J Orthod. 1979;76:657–75.CrossRefPubMedGoogle Scholar
  30. 30.
    Fujita K. Multilingual bracket and mushroom arch wire technique. A clinical report. Am J Orthod. 1982;82:120–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Widu F, Drescher D, Junker R, Bourauel C. Corrosion and biocompatibility of orthodontic wires. J Mater Sci Mater Med. 1999;10:275–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Drescher D, Bourauel C, Schumacher HA. Frictional forces between bracket and archwire. Am J Orthod Dentofac Orthop. 1989;96:397–404.CrossRefGoogle Scholar
  33. 33.
    Barrett RD, Bishara SE, Quinn JK. Biodegradation of orthodontic appliances, I biodegradation of nickel and chromium in vitro. Am J Orthod Dentofac Orthop. 1993;103:8–14.CrossRefGoogle Scholar
  34. 34.
    Park HY, Shearer TR. In vitro release of nickel and chromium from simulated orthodontic appliances. Am J Orthod. 1983;84:156–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Kerosuo H, Moe G, Kleven E. In vitro release of nickel and chromium from different types of simulated orthodontic appliances. Angle Orthod. 1995;65:111–6.PubMedGoogle Scholar
  36. 36.
    Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR, et al. Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res. 1999;48:488–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Grimsdottir MR, Gjerdet NR, Hensten-Pettersen A. Composition and in vitro corrosion of orthodontic appliances. Am J Orthod Dentofac Orthop. 1992;101:525–32.CrossRefGoogle Scholar
  38. 38.
    Delescluse J, Dinet Y. Nickel allergy in Europe: the new European legislation. Dermatology. 1994;189(2):56–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Vreeburg KJJ, de Groot K, von Blomberg BME, Scheper RJ. Induction of immunological tolerance by oral administration of nickel and chromium. J Dent Res. 1984;63:124–8.PubMedGoogle Scholar
  40. 40.
    Hwang CJ, Shin JS, Cha JY. Metal release from simulated fixed orthodontic appliances. Am J Orthod Dentofac Orthop. 2001;120:383–9.CrossRefGoogle Scholar
  41. 41.
    Gil FJ, Solano E, Peña J, Engel E, Mendoza A, Planell JA. Microstructural, mechanical and cytotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J Mater Sci Mater Med. 2004;15:1181–5.PubMedGoogle Scholar
  42. 42.
    Locci P, Marinucci L, Lilli C, Belcastro S, Staffolani N, Bellocchio S, et al. Biocompatibility of alloys used in orthodontics evaluated by cell culture tests. J Biomed Mater Res. 2000;51:561–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009; Aug 19 (Epub ahead of print).Google Scholar
  44. 44.
    Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles—a comparison between nano and micrometer size. Toxicol Lett. 2009;188:112–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Quinn JF, Crane S, Harris C, Wadsworth TL. Copper in Alzheimer’s disease: too much or too little? Expert Rev Neurother. 2009;9:631–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Michelberger DJ, Eadie RL, Faulkner MG, Glover KE, Prasad NG, Major PW. The friction and wear patterns of orthodontic brackets and archwires in the dry state. Am J Orthod Dentofac Orthop. 2000;118:662–74.CrossRefGoogle Scholar
  47. 47.
    Berradja A, Willems G, Celis JP. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in vitro. Aust Orthod J. 2006;22:11–9.PubMedGoogle Scholar
  48. 48.
    Berradja A, Bratu F, Benea L, Willems G, Celis JP. Effect of sliding wear on tribocorrosion behaviour of stainless steel in a Ringer’s solution. Wear. 2006;261:987–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos Suárez
    • 1
    Email author
  • Teresa Vilar
    • 2
  • Javier Gil
    • 3
  • Pablo Sevilla
    • 3
  1. 1.Division d’Orthodontie, Section de Médecine Dentaire, Faculté de MédecineUniversité de GenèveGenevaSwitzerland
  2. 2.Departament d’Odontoestomatologia, Facultat d’OdontologiaUniversitat de BarcelonaL’Hospitalet de LlobregatSpain
  3. 3.Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Escola Tècnica Superior d’Enginyeria IndustrialUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations