Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 2, pp 431–438

Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements

Article

Abstract

The influence of magnesium- and strontium-substitutions on injectability and mechanical performance of brushite-forming α-TCP cements has been evaluated in the present work. The effects of Mg- and Sr-substitutions on crystalline phase composition and lattice parameters were determined through quantitative X-ray phase analysis and structural Rietveld refinement of the starting calcium phosphate powders and of the hardened cements. A noticeable dependence of injectability on the liquid-to-powder ratio (LPR), smooth plots of extrusion force versus syringe plunger displacement and the absence of filter pressing effects were observed. For LPR values up to 0.36 ml g−1, the percentage of injectability was always higher and lower for Mg-containing cements and for Sr-containing cements, respectively, while all the pastes could be fully injected for LPR > 0.36 ml g−1. The hardened cements exhibited relatively high wet compressive strength values (~17–25 MPa) being the Sr- and Mg-containing cements the strongest and the weakest, respectively, holding an interesting promise for uses in trauma surgery such as for filling bone defects and in minimally invasive techniques such as percutaneous vertebroplasty to fill lesions and strengthen the osteoporotic bone.

References

  1. 1.
    Gbureck U, Vorndran E, Muller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122:173–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Metallidis S, Topsis D, Nikolaidis J, Alexiadou E, Lazaraki G, Grovaris L, et al. Penetration of moxifloxacin and levofloxacin into cancellous and cortical bone in patients undergoing total hip arthroplasty. J Chemother. 2007;19:682–7.PubMedGoogle Scholar
  3. 3.
    Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17:3980–6.CrossRefGoogle Scholar
  4. 4.
    Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandez E. Bioactive bone cements. Wiley Encyclopaedia of Biomedical Engineering. New York: Wiley; 2006.Google Scholar
  6. 6.
    Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Inj-Intern Care Injur. 2000;31:37–47.Google Scholar
  7. 7.
    Dorozhkin SV. Calcium orthophosphates. J Mater Sci. 2007;42:1061–95.CrossRefADSGoogle Scholar
  8. 8.
    Brown WE, Chow LC. A new calcium-phosphate setting cement. J Dent Res. 1983;62:672.Google Scholar
  9. 9.
    Wang XP, Ye JD, Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J Biomed Mater Res Appl Biomater. 2006;78:259–64.Google Scholar
  10. 10.
    Yuan HP, Li YB, de Bruijn JD, de Groot K, Zhang XD. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials. 2000;21:1283–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Alves HLR, dos Santos LA, Bergmann CP. Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med. 2008;19:2241–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Baroud G, Cayer E, Bohner M. Rheological characterization of concentrated aqueous á-tricalcium phosphate suspensions: the effect of liquid-to-powder ratio, milling time, and additives. Acta Biomater. 2005;1:357–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Boesel L, Reis RL. The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Biomaterials. 2006;27:5627–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Burguera EF, Xu HHK, Sun LM. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J Biomed Mater Res Appl Biomater. 2008;84:493–502.Google Scholar
  16. 16.
    Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26:5444–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Baroud G, Wu JZ, Bohner M, Sponagel S, Steffen T. How to determine the permeability for cement infiltration of osteoporotic cancellous bone. Med Eng Phys. 2003;25:283–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Khairoun I, Boltong MG, Driessens FCM, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med. 1998;9:425–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24:1521–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Ginebra MP, Rilliard A, Fernandez E, Elvira C, San Roman J, Planell JA. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res. 2001;57:113–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Sarda S, Fernandez E, Nilsson M, Balcells M, Planell JA. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res. 2002;61:653–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Gbureck U, Barralet JE, Spatz K, Grover LM, Thull R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004;25:2187–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Habib M, Baroud G, Gitzhofer F, Bohner M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008;4:1465–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials. 2004;25:2197–203.CrossRefPubMedGoogle Scholar
  25. 25.
    Sarda S, Fernandez E, Llorens J, Martinez S, Nilsson M, Planell JA. Rheological properties of an apatitic bone cement during initial setting. J Mater Sci Mater Med. 2001;12:905–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25:31–4.CrossRefGoogle Scholar
  27. 27.
    Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Isomorphous substitutions in beta-tricalcium phosphate: the different effects of zinc and strontium. J Inorg Biochem. 1997;66:259–65.CrossRefGoogle Scholar
  28. 28.
    Kannan S, Lemos AF, Rocha JHG, Ferreira JMF. Characterization and mechanical performance of the Mg-stabilized á-Ca 3 (PO 4) 2 prepared from Mg-substituted Ca-deficient apatite. J Am Ceram Soc. 2006;89:2757–61.CrossRefGoogle Scholar
  29. 29.
    Kannan S, Lemos IAF, Rocha JHG, Ferreira JMF. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/beta-tricalcium phosphate ratios. J Solid State Chem. 2005;178:3190–6.CrossRefADSGoogle Scholar
  30. 30.
    Kannan S, Pina S, Ferreira JMF. Formation of strontium-stabilized á-tricalcium phosphate from calcium-deficient apatite. J Am Ceram Soc. 2006;89:3277–80.CrossRefGoogle Scholar
  31. 31.
    Kannan S, Rocha JHG, Ferreira JMF. Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites. J Mater Chem. 2006;16:286–91.CrossRefGoogle Scholar
  32. 32.
    Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP. Synthesis and structure of magnesium-substituted hydroxyapatite 1. Inorg Mater. 2003;39:947–50.CrossRefGoogle Scholar
  33. 33.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004;25:4647–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med. 2005;16:455–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Rokita E, Hermes C, Nolting HF, Ryczek J. Substitution of calcium by strontium within selected calcium phosphates. J Cryst Growth. 1993;130:543–52.CrossRefADSGoogle Scholar
  36. 36.
    Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009;5:1233–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Mathew M, Schroeder LW, Dickens B, Brown WE. Crystal structure of alpha-Ca3(PO4)2. Acta Crys: Struct Commun. 1977;33:1325–33.Google Scholar
  38. 38.
    Yashima M, Sakai A, Kamiyama T, Hoshikawa A. Crystal structure analysis of beta-tricalcium phosphate Ca-3(PO4)(2) by neutron powder diffraction. J Sol St Chem. 2003;175:272–7.Google Scholar
  39. 39.
    Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate – neutron-diffraction investigation. J Chem Soc. 1971;23:3725–9.Google Scholar
  40. 40.
    Xu HHK, Weir MD, Burguera EF, Fraser AM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials. 2006;27:4279–87.CrossRefPubMedGoogle Scholar
  41. 41.
    Lemos AF, Ferreira JMF. Combining foaming and starch consolidation methods to develop macroporous hydroxyapatite implants. Bioceram. 2004;254:1041–4.Google Scholar
  42. 42.
    Bohner M, Gbureck U. Thermal reactions of brushite cements. J Biomed Mater Res Appl Biomater. 2008;84:375–85.Google Scholar
  43. 43.
    Olhero SM, Ferreira JMF. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol. 2004;139:69–75.CrossRefGoogle Scholar
  44. 44.
    Mezger TG. The rheology handbook: for users of rotational and oscillation rheometers. Hannover: Vicentz Verlag; 2002.Google Scholar
  45. 45.
    Alkhralsat MH, Marino FT, Rodriguez CR, Jerez LB, Cabarcos EL. Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater. 2008;4:664–70.CrossRefGoogle Scholar
  46. 46.
    TenHuisen KS, Brown PW. Effects of magnesium on the formation of calcium-deficient hydroxyapatite from CaHPO4·2H2O and Ca4(PO4)2O. J Biomed Mater Res. 1997;36:306–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone. 1996;18:253–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Saint-Jean SJ, Camire CL, Nevsten P, Hansen S, Ginebra MP. Study of the reactivity and in vitro bioactivity of Sr-substituted à-TCP cements. J Mater Sci Mater Med. 2005;16:993–1001.CrossRefPubMedGoogle Scholar
  49. 49.
    Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promoters to calcium phosphate cements. Biomaterials. 1999;20:393–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Duck FA. Physical properties of tissue: a comprehensive reference book. London: Academic Press Limited; 1990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Pina
    • 1
  • P. M. C. Torres
    • 1
  • J. M. F. Ferreira
    • 1
  1. 1.Department of Ceramics and Glass EngineeringUniversity of Aveiro, CICECOAveiroPortugal

Personalised recommendations