A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide

  • Nenad L. Ignjatović
  • Petar Ninkov
  • Roya Sabetrasekh
  • Dragan P. UskokovićEmail author


The purpose of the study presented in this paper has been to examine the possibility of the synthesis of a new nanoparticulate system for controlled and systemic drug delivery with double effect. In the first step, a drug is released from bioresorbable polymer; in the second stage, after resorption of the polymer, non-bioresorbable calcium phosphate remains the chief part of the particle and takes the role of a filler, filling a bone defect. The obtained tigecycline-loaded calcium-phosphate(CP)/poly(dl-lactide-co-glycolide)(PLGA) nanoparticles contain calcium phosphate coated with bioresorbable polymer. The composite was analyzed by FT-IR, XRD and AFM methods. The average particle size of the nanocomposite ranges between 65 and 95 nm. Release profiles of tigecycline were obtained by UV–VIS spectroscopy in physiological solution at 37°C. Experimental results were analyzed using Peppas and Weibull mathematical models. Based on kinetic parameters, tigecycline release was defined as non-Fickian transport. The cytotoxicity of the nanocomposite was examined on standard cell lines of MC3T3-E1, in vitro. The obtained low values of lactate dehydrogenase (LDH) activity (under 37%) indicate low cytotoxicity level. The behaviour of the composite under real-life conditions was analyzed through implantation of the nanocomposite into living organisms, in vivo. The system with the lowest tigecycline content proved to be an adequate system for local and controlled release. Having in mind the registered antibiotics concentration in other tissues, delivery systems with a higher tigecycline content show both local and systemic effects.


Calcium Phosphate Tigecycline Average Particle Diameter Calcium Phosphate Ceramic Calcium Phosphate Bone Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Ministry of Science and Technological Development of the Republic of Serbia, under Grant No. 142006: Synthesis of functional materials with controlled structure on molecular and nano- levels. The authors would like to thank to Dr. D. Vasiljevic-Radovic for AFM analysis, Dr. M. Mitric for his kind help help in X ray measurements and Dr. M. Dramicanin for DLS analysis. The study is a result of joint research carried out by the Department of Biomaterials, Faculty of Dentistry, University of Oslo, under the guidance of Prof. Dr. Petter Lyngstadaas and Institute of Technical Sciences of the Serbian Academy of Sciences and Arts.


  1. 1.
    El-Kamel AH, Baddour MM. Gatifloxacin biodegradable implant for treatment of experimental osteomyelitis: in vitro and in vivo evaluation. Drug Deliv. 2007;14:349–56. doi: 10.1080/10717540601098716.CrossRefPubMedGoogle Scholar
  2. 2.
    Neut D, van de Belt H, Stokroos I, van Horn J, van der Mei H, Busscher H. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47:885–91. doi: 10.1093/jac/47.6.885.CrossRefPubMedGoogle Scholar
  3. 3.
    Whitener CJ, Park SY, Browne FA, Parent LJ, Julian K, Bozdogan B, et al. Vancomycin-resistant Staphylococcus aureus in the absence of vancomycin exposure. Clin Infect Dis. 2004;38:1049–55. doi: 10.1086/382357.CrossRefPubMedGoogle Scholar
  4. 4.
    Ratier A, Gibson I, Best S, Freche M, Lacout J, Rodrigez F. Setting characteristic and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials. 2001;22:897–901. doi: 10.1016/S0142-9612(00)00252-0.CrossRefPubMedGoogle Scholar
  5. 5.
    Ratier A, Freche M, Lacout J, Rodrigez F. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int J Pharm. 2004;274:261–8. doi: 10.1016/j.ijpharm.2004.01.021.CrossRefPubMedGoogle Scholar
  6. 6.
    Hylands J. Tigecycline: a new antibiotic. Intensive Crit Care Nurs. 2008;24:260–3. doi: 10.1016/j.iccn.2008.03.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Harris R, Cruz M. Tigecycline (Tygacil): a novel first-in-class, broad-spectrum intravenous antibiotic for the treatment of serious bacterial infections. P & T. 2006;31:18–27.Google Scholar
  8. 8.
    El-Amin SF, Lu HH, Khan Y, Burems J, Mitchell J, Tuan RS, et al. Extracellular matrix production by human osteoblast cultured on biodegradable polymers applicable for tissue engineering. Biomaterials. 2003;24:1213–21. doi: 10.1016/S0142-9612(02)00451-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ignjatovic N, Ninkov P, Ajdukovic Z, Vasiljevic-Radovic D, Uskokovic D. Biphasic calcium phosphate/poly-dl-lactide-co-glycolide composite biomaterial as bone substitute. J Eur Ceram Soc. 2007;27:1589–94. doi: 10.1016/j.jeurceramsoc.2006.04.104.CrossRefGoogle Scholar
  10. 10.
    Ignjatovic N, Ajdukovic Z, Uskokovic D. New biocomposite calciumphosphate/poly-dl-lactide-co-glycolide/biostimulative agens filler for reconstruction of bone tissue changed by osteoporosis. J Mater Sci: Mater Med. 2005;16:621–6. doi: 10.1007/s10856-005-2532-6.CrossRefGoogle Scholar
  11. 11.
    Ajdukovic Z, Ignjatovic N, Petrovic D, Uskokovic D. Substitution of osteoporotic alveolar bone by biphasic calciumphosphate/poly-dl-lactide-co-glycolide biomaterials. J Biomater Appl. 2007;21:317–28.PubMedGoogle Scholar
  12. 12.
    Ignjatovic N, Ninkov P, Kojic V, Bokurov M, Srdic V, Krnojelac D, et al. Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microsc Res Tech. 2006;69:976–82. doi: 10.1002/jemt.20374.CrossRefPubMedGoogle Scholar
  13. 13.
    Pataro AL, Oliviera MF, Teixeira KI, Turchetti-Maia RM, Lopes MT, Wykrota FH, et al. Polymer: bioceramic composites optimization by tetracycline addition. Int J Pharm. 2007;336:75–81. doi: 10.1016/j.ijpharm.2006.11.038.CrossRefPubMedGoogle Scholar
  14. 14.
    Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolid acid) composite bone cement. Biomaterials. 2006;27:4239–49. doi: 10.1016/j.biomaterials.2006.03.032.CrossRefPubMedGoogle Scholar
  15. 15.
    Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyalitis. Biomaterials. 2008;29:350–8. doi: 10.1016/j.biomaterials.2007.09.040.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu Q, Czernuszka J. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactide-co-glycolic acid) microspheres. J Control Release. 2008;127:146–53.PubMedGoogle Scholar
  17. 17.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63. doi: 10.1016/j.biomaterials.2004.05.010.CrossRefPubMedGoogle Scholar
  18. 18.
    Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med. 2007;1:4–24. doi: 10.1002/term.2.CrossRefPubMedGoogle Scholar
  19. 19.
    Ritger P, Peppas N. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36. doi: 10.1016/0168-3659(87)90034-4.CrossRefGoogle Scholar
  20. 20.
    Weibull W. A statistical distribution functional of wide applicability. ASME Trans J Appl Mech. 1951;18:293–7.zbMATHGoogle Scholar
  21. 21.
    Stevanovic M, Savic J, Jordovic B, Uskokovic D. Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids Surf B Biointerfaces. 2007;59:215–23. doi: 10.1016/j.colsurfb.2007.05.011.CrossRefPubMedGoogle Scholar
  22. 22.
    Ignjatovic N, Uskokovic D. Molecular spectroscopy analysis of the substitution of bone tissue by HAp/PLLA composite biomaterial. Spectros-Int J. 2004;18:553–65.Google Scholar
  23. 23.
    Costantino L, Gandolfi F, Bossy-Nobs L, Tosi G, Gurny R, Rivasi F, et al. Nanoparticulate drug carriers based on hybrid poly(d, l-lactide-co-glycolide)-dendron structures. Biomaterials. 2006;27:4635–45. doi: 10.1016/j.biomaterials.2006.04.026.CrossRefPubMedGoogle Scholar
  24. 24.
    JCPDS File No. 9-432, International Center for Diffraction Data.Google Scholar
  25. 25.
    Martinez-Sancho C, Herrero-Vanrell R, Negro S. Study of gamma-irradiation effects on aciclovir poly(d, l-lactic-co-glycolic) acid microspheres for intravitreal administration. J Control Release. 2004;99:41–52. doi: 10.1016/j.jconrel.2004.06.004.CrossRefPubMedGoogle Scholar
  26. 26.
    LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and application. J Mater Sci: Mater Med. 2003;14:201–9. doi: 10.1023/A:1022872421333.CrossRefGoogle Scholar
  27. 27.
    Kumta PN, Sfeir C, Lee DH, Olton D, Choi D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005;1:65–83. doi: 10.1016/j.actbio.2004.09.008.CrossRefPubMedGoogle Scholar
  28. 28.
    Suslick K. The yearbook of science and the future 1994, Encyclopedia Britanica, Chicago; 1994. p. 138–55.Google Scholar
  29. 29.
    Suslick KS. Sonochemistry. Science. 1990;247:1439–45. doi: 10.1126/science.247.4949.1439.CrossRefPubMedADSGoogle Scholar
  30. 30.
    Markovic S, Mitric M, Starcevic G, Uskokovic D. Ultrasonics de-agglomeration of barium titanate powder. Ultrason Sonochem. 2008;15:16–20. doi: 10.1016/j.ultsonch.2007.07.008.CrossRefPubMedGoogle Scholar
  31. 31.
    Ignjatovic N, Uskokovic D. Biodegradable composites based on nano-crystalline calcium phosphate and bioresorbable polymers. Adv Appl Ceram. 2008;107:142–7. doi: 10.1179/174367608X263421.CrossRefGoogle Scholar
  32. 32.
    Ignjatovic NL, Liu CZ, Czernuszka JT, Uskokovic DP. Micro and nano/injectable composite biomaterials of calcium phosphate coated with poly(dl-lactide-co-glycolide). Acta Biomater. 2007;3:927–35. doi: 10.1016/j.actbio.2007.04.001.CrossRefPubMedGoogle Scholar
  33. 33.
    Stevanovic M, Jordovic B, Uskokovic D. Preparation and characterization of poly(d, l-lactide-co-glycolide) nanoparticles containing ascorbic acid. J Biomed Biotechnol. 2007;2007:84965. doi: 10.1155/2007/84965.PubMedGoogle Scholar
  34. 34.
    Siepmann J, Siepmann F. Mathematical modeling of drug release. Int J Pharm. 2008;364:328–43. doi: 10.1016/j.ijpharm.2008.09.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Gbureck U, Vorndran E, Barrelet J. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 2008;4:1480–6. doi: 10.1016/j.actbio.2008.02.027.CrossRefPubMedGoogle Scholar
  36. 36.
    Jorgensen K, Jacobsen L. Factorial design used for ruggedness testing of flow through cell dissolution method by means of Weibull transformed drug release profiles. Int J Pharm. 1992;88:23–9. doi: 10.1016/0378-5173(92)90300-Q.CrossRefGoogle Scholar
  37. 37.
    Saettone M, Cheton P, Mariotti Bianch L, Giannaccin B, Conte U, Sangalli M. Controlled release of timolol maleate from coated ophthalmic mini-tablets prepared by compression. Int J Pharm. 1995;126:79–82. doi: 10.1016/0378-5173(95)04096-X.CrossRefGoogle Scholar
  38. 38.
    Hasimi A, Stavropoulou A, Papadokostaki K, Sanopoulou M. Transport of water in polyvinyl alcohol films: effect of thermal treatment and chemical crosslinking. Eur Polym J. 2008;44:4098–107. doi: 10.1016/j.eurpolymj.2008.09.011.CrossRefGoogle Scholar
  39. 39.
    Ahn JS, Choi HK, Chun MK, Ryu JM, Jung JH, Kim YU, et al. Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro. Biomaterials. 2002;23:1411–6. doi: 10.1016/S0142-9612(01)00261-7.CrossRefPubMedGoogle Scholar
  40. 40.
    Edwards D. Non-Fickian transport. J Polym Sci B Polym Phys. 1996;34:981–97. doi: 10.1002/(SICI)1099-0488(19960415)34:5<981:AID-POLB16>3.0.CO;2-7.CrossRefADSGoogle Scholar
  41. 41.
    Bettany JT, Wolowacz RG. Tetracycline derivatives induce apoptosis selectively in cultured monocytes and macrophages but not in mesenchymal cells. Adv Dent Res. 1998;12:136–43. doi: 10.1177/08959374980120010901.CrossRefPubMedGoogle Scholar
  42. 42.
    Polson A, Bouwsma O, McNamara T, Golub L. Enhancement of alveolar bone formation after tetracycline administration in squirrel monkeys. J Appl Res Clin Dent. 2005;2:32–42.Google Scholar
  43. 43.
    Lee DK, Kim Y, Parks KS, Jang JW, Kim K, Na NJ. Antimicrobial activity of mupirocin, daptomycin, linezolid, quinupristin/alfopristin and tigecycline against vancomycin-resistant enterococci (VRE) from clinical isolates in Korea (1998 and 2005). J Biochem Mol Biol. 2007;40:881–7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nenad L. Ignjatović
    • 1
  • Petar Ninkov
    • 2
  • Roya Sabetrasekh
    • 2
  • Dragan P. Uskoković
    • 1
    Email author
  1. 1.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Faculty of Dentistry, Department of BiomaterialsUniversity of OsloOsloNorway

Personalised recommendations