The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts

  • S. Murphy
  • D. BoydEmail author
  • S. Moane
  • M. Bennett


Controlled delivery of active ions from biomaterials has become critical in bone regeneration. Some silica-based materials, in particular bioactive glasses, have received much attention due to the ability of their dissolution products to promote cell proliferation, cell differentiation and activate gene expression. However, many of these materials offer little therapeutic potential for diseased tissue. Incorporating trace elements, such as zinc and strontium, known to have beneficial and therapeutic effects on bone may provide a more viable bone graft option for those suffering from metabolic bone diseases such as osteoporosis. Rational compositional design may also allow for controlled release of these active ions at desirable dose levels in order to enhance therapeutic efficacy. In this study, six differing compositions of calcium–strontium–sodium–zinc–silicate (Ca–Sr–Na–Zn–Si) glass bone grafts were immersed in pH 7.4 and pH 3 solutions to study the effect of glass composition on zinc and strontium release in a normal and extreme physiological environment. The zinc release levels over 30 days for all zinc-containing glasses in the pH 7.4 solution were 3.0–7.65 ppm. In the more acidic pH 3 environment, the zinc levels were higher (89–750 ppm) than those reported to be beneficial and may produce cytotoxic or negative effects on bone tissue. Strontium levels released from all examined glasses in both pH environments similarly fell within apparent beneficial ranges—7.5–3500 ppm. Glass compositions with identical SrO content but lower ZnO:Na2O ratios, showed higher levels of Sr2+ release. Whereas, zinc release from zinc-containing glasses appeared related to ZnO compositional content. Sustainable strontium and zinc release was seen in the pH 7.4 environment up to day 7. These results indicate that the examined Ca–Sr–Na–Zn–Si glass compositions show good potential as therapeutic bone grafts, and that the graft composition can be tailored to allow therapeutic levels of ions to be released.


Strontium Na2O Release Profile Bioactive Glass Glass Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Russell JL, Block JE. Surgical harvesting of bone graft from the ilium: point of view. Med Hypotheses. 2000;55:474–9. doi: 10.1054/mehy.2000.1095.CrossRefPubMedGoogle Scholar
  2. 2.
    Marsh JL. Principles of bone grafting: non-union, delayed union. Surgery. 2006;24:207–10.Google Scholar
  3. 3.
    Palmer SH, Gibbons CLMH, Athanasou NA. The pathology of bone allograft. J Bone Joint Surg Br. 1999;81-B:333–5. doi: 10.1302/0301-620X.81B2.9320.CrossRefGoogle Scholar
  4. 4.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–5. doi: 10.1006/bbrc.2000.3503.CrossRefPubMedGoogle Scholar
  5. 5.
    Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci: Mater Med. 2006;17:997–1002. doi: 10.1007/s10856-006-0435-9.CrossRefGoogle Scholar
  6. 6.
    Cerruti M, Greenspan D, Powers K. Effect of pH and ionic strength on the reactivity of bioglass 45S5. Biomaterials. 2005;26:1665–74. doi: 10.1016/j.biomaterials.2004.07.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Moore W, Graves S, Bain G. Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354–61. doi: 10.1046/j.1440-1622.2001.02128.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Hench LL. Glass and genes: the 2001 W E S Turner memorial lecture. Glass Technol. 2003;44:1–10.Google Scholar
  9. 9.
    Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67:321–9. doi: 10.1007/s002230001134.CrossRefPubMedGoogle Scholar
  10. 10.
    Christodoulou I, Buttery L, Saravanapavan P, Hench LL, Polak JM. Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater. 2005;74B:529–37. doi: 10.1002/jbm.b.30249.CrossRefGoogle Scholar
  11. 11.
    Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C. Acta Biomater. (in press), corrected proof.Google Scholar
  12. 12.
    Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001;22:1683–7. doi: 10.1016/S0142-9612(00)00330-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Xie Z, Zhang C, Yi C, Qiu J, Wang J, Zhou J. Failure of particulate bioglass to prevent experimental staphylococcal infection of open tibial fractures. J Antimicrob Chemother. 2008;62:1162–3. doi: 10.1093/jac/dkn336.CrossRefPubMedGoogle Scholar
  14. 14.
    Hu S, Chang J, Liu M. Study on antibacterial effect of 45S5 Bioglass. J Mater Sci: Mater Med. 2009;20:281–6. doi: 10.1007/s10856-008-3564-5.CrossRefGoogle Scholar
  15. 15.
    Love BJ, Popp JR, Goldstein AS. Effect of soluble zinc on differentiation of osteoprogenitor cells. J Biomed Mater Res A. 2007;81A:766–9. doi: 10.1002/jbm.a.31214.CrossRefGoogle Scholar
  16. 16.
    Chen D, Waite L, Pierce W. In vitro effects of zinc on markers of bone formation. Biol Trace Elem Res. 1999;68:225–34. doi: 10.1007/BF02783905.CrossRefPubMedGoogle Scholar
  17. 17.
    Boyd D, Li H, DA T, Towler M, Wall J. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci: Mater Med. 2006;17:489–94. doi: 10.1007/s10856-006-8930-6.CrossRefGoogle Scholar
  18. 18.
    Zhu L-L, Zaidi S, Peng Y. Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 2007;355:307–11. doi: 10.1016/j.bbrc.2007.01.120.CrossRefPubMedGoogle Scholar
  19. 19.
    Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38. doi: 10.1016/j.bone.2007.08.043.CrossRefPubMedGoogle Scholar
  20. 20.
    Wallace K, Hill R, Pembroke J, Brown C, Hatton P. Influence of sodium oxide content on bioactive glass properties. J Mater Sci: Mater Med. 1999;10:697–701. doi: 10.1023/A:1008910718446.CrossRefGoogle Scholar
  21. 21.
    Dias AG, Gibson IR, Santos JD, Lopes MA. Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system. Acta Biomater. 2007;3:263–9. doi: 10.1016/j.actbio.2006.09.009.CrossRefPubMedGoogle Scholar
  22. 22.
    Teitelbaum S. Bone resorption by osteoclasts. Science. 2000;289:1504–8. doi: 10.1126/science.289.5484.1504.CrossRefPubMedADSGoogle Scholar
  23. 23.
    ISO 11137. Sterilisation of healthcare products. Geneva: International Organisation of Standardization; 2006.Google Scholar
  24. 24.
    Boyd D, Towler M, Law R, Hill R. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci: Mater Med. 2006;17:397–402. doi: 10.1007/s10856-006-8465-x.CrossRefGoogle Scholar
  25. 25.
    ISO. Biological evaluation of medical devices, In: part 14: identification and quantification of degradation products from ceramics. Geneva: International Organization of Standardization; 1997.Google Scholar
  26. 26.
    Boyd D, Carroll G, Towler M, Freeman C, Farthing P, Brook IM. Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. J Mater Sci: Mater Med. 2009;20:413–20. doi: 10.1007/s10856-008-3569-0.CrossRefGoogle Scholar
  27. 27.
    Holloway DG. The physical properties of glass. London: Wykeham; 1973.Google Scholar
  28. 28.
    Yamaguchi M, Igarashi A, Uchiyama S. Bioavailability of zinc yeast in rats: stimulatory effect on bone calcification in vivo. J Health Sci. 2004;50:75–81. doi: 10.1248/jhs.50.75.CrossRefGoogle Scholar
  29. 29.
    Ito A. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C. 2002;22:21–5. doi: 10.1016/S0928-4931(02)00108-X.CrossRefGoogle Scholar
  30. 30.
    Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, et al. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact. 2007;167:207–18. doi: 10.1016/j.cbi.2007.03.002.CrossRefPubMedGoogle Scholar
  31. 31.
    Lusvardi G, Zaffe D, Menabue L, Bertoldi C, Malavasi G, Consolo U. Acta Biomater. (in press), corrected proof.Google Scholar
  32. 32.
    Reginster JY, Meunier PJ. Strontium ranelate phase 2 dose-ranging studies: PREVOS and STRATOS studies. Osteoporos Int. 2003;14:56–65. doi: 10.1007/s00198-003-1432-1.CrossRefGoogle Scholar
  33. 33.
    Schrooten I, et al. Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int. 2003;63:927–35. doi: 10.1046/j.1523-1755.2003.00809.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Granbow B, Muller R. First-order dissolution rate law and the role of surface layers in glass performance assessment. J Nucl Mater. 2001;298:112–24. doi: 10.1016/S0022-3115(01)00619-5.CrossRefADSGoogle Scholar
  35. 35.
    McMillan PW. Glass-ceramics. New york: Academic Press; 1964.Google Scholar
  36. 36.
    Misra D. Interaction of citric acid with hydroxyapatite: surface exchange of ions and precipitation of calcium citrate. J Dent Res. 1996;6:1418–25. doi: 10.1177/00220345960750061401.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Medical Engineering Design and Innovation CentreCork Institute of TechnologyCorkIreland
  2. 2.Department of Applied ScienceLimerick Institute of TechnologyLimerickIreland

Personalised recommendations