Blood compatibility improvement of titanium oxide film modified by doping La2O3

  • Lin Zhang
  • Dihu Chen
  • Keqiang Wang
  • Fengmei Yu
  • Zhanyun Huang
  • Shirong Pan


La2O3 doped titanium oxide (TiO2) films with different concentration were deposited by means of the Radio-Frequency magnetron sputtering technique. The microstructure and surface properties of TiO2 films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and contact angle test. The blood compatibility of the specimens was evaluated by tests of platelet adhesion. Results show that pure rutile phase is formed in doped samples and La2O3 incorporation significantly improves the wettability and hemocompatibility of TiO2 films. Our studies demonstrate that La2O3 doped TiO2 films are potentially useful biomaterials with good blood compatibility.


TiO2 Human Serum Albumin Interfacial Tension La2O3 TiO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Natural Science Foundation of China under Grant No 30370410 and 30770588.


  1. 1.
    Zhang F, Zheng ZH, Chen Y, Liu XH, Chen AQ, Jiang ZB. In vivo investigation of blood compatibility of titanium oxide films. J Biomed Mater Res. 1998;42:128–33. doi: 10.1002/(SICI)1097-4636(199810)42:1<128::AID-JBM16>3.0.CO;2-H.PubMedCrossRefGoogle Scholar
  2. 2.
    Akin FA, Zreiqat H, Jordan S, Wijesundara MBJ, Hanley L. Preparation and analysis of macroporous TiO2 film on Ti surfaces for bone-tissue implants. J Biomed Mater Res. 2001;57:588–96. doi: 10.1002/1097-4636(20011215)57:4<588::AID-JBM1206>3.0.CO;2-Y.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang P, Huang N, Leng YX, Chen JY, Sun H, Wang J, et al. In vivo study of Ti-O thin film fabricated by PIII. Surf Coat Tech. 2002;156:284–8. doi: 10.1016/S0257-8972(02)00087-7.CrossRefGoogle Scholar
  4. 4.
    Velten D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4 V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mater Res. 2002;59:18–28. doi: 10.1002/jbm.1212.PubMedCrossRefGoogle Scholar
  5. 5.
    Takemoto S, Yamamoto T, Tsuru K, Hayakawa S, Osaka A, Takashima S. Platelet adhesion on titanium oxide gels: effect of surface oxidation. Biomaterials. 2004;25:3485–92. doi: 10.1016/j.biomaterials.2003.10.070.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang XH, Prokert F, Reuther H, Maitz MF, Zhang F. Chemical composition and biocompatibility of Ti-Ag-O films prepared by ion beam assisted deposition. Surf Coat Tech. 2004;185:12–7. doi: 10.1016/j.surfcoat.2003.12.002.CrossRefGoogle Scholar
  7. 7.
    Yang P, Leng YX, Zhao AS, Zhou HF, Xu LX, Hong S, et al. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation. Nucl Instrum Methods Phys Res B. 2006;242:15–7. doi: 10.1016/j.nimb.2005.08.099.CrossRefADSGoogle Scholar
  8. 8.
    Evans CH. Biochemistry of the lanthanides. New York: Plenum Press; 1990.Google Scholar
  9. 9.
    Jing FJ, Wang L, Liu YW, Fu RKY, Zhao XB, Shen R, et al. Hemocompatibility of lanthanum oxide films fabricated by dual plasma deposition. Thin Solid Films. 2006;515:1219–22. doi: 10.1016/j.tsf.2006.07.137.CrossRefADSGoogle Scholar
  10. 10.
    Yang HJ, Yang K, Zhang BC. Pitting corrosion resistance of La added 316L stainless steel in simulated body fluids. Mater Lett. 2007;61:1154–7. doi: 10.1016/j.matlet.2006.06.071.CrossRefGoogle Scholar
  11. 11.
    Zhang L, Lv P, Huang ZY, Lin SP, Chen DH, Pan SR, et al. Blood compatibility of La2O3 doped diamond-like carbon films. Diam Relat Mater. 2008;17:1922–6. doi: 10.1016/j.diamond.2008.04.011.CrossRefGoogle Scholar
  12. 12.
    Robertson J, O’Reilly EP. Elctronic and atomic structure of amorphous carbon. Phys Rev B. 1987;35:2946–7. doi: 10.1103/PhysRevB.35.2946.CrossRefADSGoogle Scholar
  13. 13.
    Lyman DJ, Knutson K, McNeil B, Shibatani K. The effects of chemical structure and surface properties of synthetic polymers on the coagulation of blood. IV. The relation between polymer morphology and protein adsorption. Trans Am Soc Artif Intern Organs. 1975;21:49–54.PubMedGoogle Scholar
  14. 14.
    Slack SM, Horbertt TA. Physiocochemical and biochemical aspects of fibrinogen adsorption from plasma and binary protein solutions. Ann Biomed Eng. 1991;19:229–30. doi: 10.1007/BF02368478.CrossRefGoogle Scholar
  15. 15.
    Sharma CP. LTI carbons: blood compatibility. J Colloid Interface Sci. 1984;97:585–6. doi: 10.1016/0021-9797(84)90332-1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lin Zhang
    • 1
  • Dihu Chen
    • 2
  • Keqiang Wang
    • 1
  • Fengmei Yu
    • 1
  • Zhanyun Huang
    • 2
  • Shirong Pan
    • 3
  1. 1.Information CollegeZhongKai University of Agriculture and EngineeringGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Optoelectronic Materials and Technologies, and School of Physics & EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Artificial Heart LaboratoryThe 1st Affiliate Hospital of Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations