Advertisement

Bioglass®-based scaffolds with carbon nanotube coating for bone tissue engineering

  • Decheng Meng
  • John Ioannou
  • Aldo R. Boccaccini
Article

Abstract

Highly porous 45S5 Bioglass®-based foam scaffolds were coated with multi-walled carbon nanotubes (CNT) by electrophoretic deposition (EPD) technique. By placing the scaffolds in between the two electrodes of the EPD cell, a CNT coating of up to 1 μm thickness was achieved on the surface throughout the whole three dimensional (3D) matrix. A 0.5 wt% CNT aqueous suspension was used and EPD was carried out at 2.8 V for 10 mins. The compression strength of this CNT/Bioglass® composite was measured to be 0.70 MPa. Moreover the increased electrical conductivity of the composite with CNT coating was confirmed. The scaffolds have the potential for applications in bone tissue engineering due to the high bioactivity, nano-roughness in 3D and electrical conductivity provided by the addition of CNT.

Keywords

Compressive Strength Simulated Body Fluid Bioactive Glass Bone Tissue Engineering Electrophoretic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors thank Dr. Sasa Novak, Ms. Katja Koenig and Ms. Katja Rade (Jozef Stefan Institute, Slovenia) for experimental support during zeta potential measurements and the British Council for partial financial support.

References

  1. 1.
    Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci. 2002;961:96–105.PubMedCrossRefADSGoogle Scholar
  2. 2.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 2001;55:151–7. doi: 10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D.PubMedCrossRefGoogle Scholar
  3. 3.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31. doi: 10.1016/j.biomaterials.2006.01.039.PubMedCrossRefGoogle Scholar
  4. 4.
    Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.CrossRefGoogle Scholar
  5. 5.
    Meyyappan M. Carbon nanotubes: science and applications. London, UK: CRC Press; 2004.Google Scholar
  6. 6.
    Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett. 1998;73(9):1197–9. doi: 10.1063/1.122125.CrossRefADSGoogle Scholar
  7. 7.
    Gao CL. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes. J Nanosci Nanotechnol. 2008;8(9):4494–9. doi: 10.1166/jnn.2008.307.PubMedCrossRefGoogle Scholar
  8. 8.
    Hwang GL, Hwang KC. Carbon nanotube reinforced ceramics. J Mater Chem. 2001;11(6):1722–5. doi: 10.1039/b101294k.CrossRefGoogle Scholar
  9. 9.
    Lin Y. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004;14(4):527–41. doi: 10.1039/b314481j.CrossRefGoogle Scholar
  10. 10.
    Guay P, Stansfield BL, Rochefort A. On the control of carbon nanostructures for hydrogen storage applications. Carbon. 2004;42(11):2187–93. doi: 10.1016/j.carbon.2004.04.027.CrossRefGoogle Scholar
  11. 11.
    Frackowiak E. Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources. 2006;153(2):413–8. doi: 10.1016/j.jpowsour.2005.05.030.CrossRefGoogle Scholar
  12. 12.
    Bae JC. Field emission properties of carbon nanotubes deposited by electrophoresis. Physica B. 2002;323(1–4):168–70. doi: 10.1016/S0921-4526(02)00890-6.CrossRefADSGoogle Scholar
  13. 13.
    Mwenifumbo S, Shaffer MS, Stevens MM. Exploring cellular behaviour with multi-walled carbon nanotube constructs. J Mater Chem. 2007;17(19):1894–902. doi: 10.1039/b617708e.CrossRefGoogle Scholar
  14. 14.
    Zanello LP. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6(3):562–7. doi: 10.1021/nl051861e.PubMedCrossRefADSGoogle Scholar
  15. 15.
    Boccaccini AR, Cho J, Roether JA, Thomas BJC, Minay EJ, Shaffer MSP. Electrophoretic deposition of carbon nanotubes—a review. Carbon. 2006;44:3149–60. doi: 10.1016/j.carbon.2006.06.021.CrossRefGoogle Scholar
  16. 16.
    Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc. 1996;79(8):1987–2002. doi: 10.1111/j.1151-2916.1996.tb08929.x.CrossRefGoogle Scholar
  17. 17.
    Boccaccini AR, Zhitomirsky I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci. 2002;6(3):251–60. doi: 10.1016/S1359-0286(02)00080-3.CrossRefGoogle Scholar
  18. 18.
    Du CS, Heldbrant D, Pan N. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Mater Lett. 2002;57(2):434–8. doi: 10.1016/S0167-577X(02)00806-6.CrossRefGoogle Scholar
  19. 19.
    Boccaccini AR, Chicatun F, Cho J, Bretcanu O, Roether JA, Novak S, et al. Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv Funct Mater. 2007;17(15):2815–22. doi: 10.1002/adfm.200600887.CrossRefGoogle Scholar
  20. 20.
    White AA, Best SM, Kinloch IA. Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol. 2007;4:1–13. doi: 10.1111/j.1744-7402.2007.02113.x.CrossRefGoogle Scholar
  21. 21.
    MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A. 2005;74:489–95.PubMedGoogle Scholar
  22. 22.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25. doi: 10.1016/j.biomaterials.2005.11.025.PubMedCrossRefGoogle Scholar
  23. 23.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. doi: 10.1016/j.biomaterials.2005.02.002.PubMedCrossRefGoogle Scholar
  24. 24.
    Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol. 2007;103:275–308. doi: 10.1007/10_021.PubMedGoogle Scholar
  25. 25.
    Zhang D, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B. 2006;110:12910–5. doi: 10.1021/jp061628k.PubMedCrossRefGoogle Scholar
  26. 26.
    Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:21–9. doi: 10.1097/00003086-200402000-00005.PubMedCrossRefGoogle Scholar
  27. 27.
    Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res. 2002;59:499–506. doi: 10.1002/jbm.10015.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Decheng Meng
    • 1
  • John Ioannou
    • 1
  • Aldo R. Boccaccini
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations