The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting

  • R. Stamp
  • P. Fox
  • W. O’Neill
  • E. Jones
  • C. Sutcliffe


Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 μm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a ‘beam overlap’ technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 μm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.


  1. 1.
    Mont MA, Hungerford DS. Proximally coated ingrowth prostheses. A review. Clin Orthop Relat Res. 1997;344:139–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Crowninshield RD, Brand RA, Pedersen DR. A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg. 1983;65:495–9.PubMedGoogle Scholar
  3. 3.
    Della Valle CJ, Berger RA, Shott S, Rosenberg AG, Jacobs JJ, Quigley L, et al. Primary total hip arthroplasty with a porous-coated acetabular component. A concise follow-up of a previous report. J Bone Joint Surg. 2004;86-A:1217–22.PubMedGoogle Scholar
  4. 4.
    Engh CA, Hopper RH Jr. The Odyssey of porous-coated fixation. J Arthroplasty. 2002;17:102–7. doi:10.1054/arth.2002.32547.PubMedCrossRefGoogle Scholar
  5. 5.
    McCutchen JW, Collier JP, Mayor MB. Osseointegration of titanium implants in total hip arthroplasty. Clin Orthop Relat Res.. 1990;261:114–25.PubMedGoogle Scholar
  6. 6.
    Petersen MB, Poulsen IH, Thomsen J, Solgaard S. The hemispherical harris-galante acetabular cup, inserted without cement. The results of an eight to eleven-year follow-up of one hundred and sixty-eight hips. J Bone Joint Surg. 1999;81:219–24.PubMedGoogle Scholar
  7. 7.
    Rodriguez JA. Acetabular fixation options: notes from the other side. J Arthroplasty. 2006;21:93–6. doi:10.1016/j.arth.2006.02.152.PubMedCrossRefGoogle Scholar
  8. 8.
    Georgette FS, Davidson JA. The effect of HIPing on the fatigue and tensile strength of a case, porous-coated Co-Cr-Mo alloy. J Biomed Mater Res. 2004;20:1229–48.CrossRefGoogle Scholar
  9. 9.
    Manley MT, Kotzar G, Stern LS, Wilde A. Effects of repetitive loading on the integrity of porous coatings. Clin Orthop Relat Res. 1987;217:293–302.PubMedGoogle Scholar
  10. 10.
    Hamman G. In: Lemons JE, editor. Quantitative characterization and performance of porous implants for hard tissue applications ASTM STP 953. Philadelphia: ASTM; 1987. p. 77.CrossRefGoogle Scholar
  11. 11.
    Bobyn JDPD, Pilliar RMPD, Cameron HUMD, Weatherly GCPD. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–70.PubMedGoogle Scholar
  12. 12.
    Bobyn J, Stackpool G, Toh K-K, Hacking S, Tanzer M, Krygier J. Bone ingrowth characteristics and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg. 1999;81-B:907–14. doi:10.1302/0301-620X.81B5.9283.CrossRefGoogle Scholar
  13. 13.
    Bobyn J, Toh K, Hacking S, Tanzer M, Krygier J. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplasty. 1999;13:347–54. doi:10.1016/S0883-5403(99)90062-1.CrossRefGoogle Scholar
  14. 14.
    Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O’Keefe TJ, et al. Radiographic evaluation of a mono-block acetabular component. J Arthroplasty. 2005;20:369–78. doi:10.1016/j.arth.2004.12.049.PubMedCrossRefGoogle Scholar
  15. 15.
    Ward LP, Strafford KN, Wilks TP, Subramanian C. The roll of refractory element based coating on the tribological and biological behavior of orthopaedic implants. J Mater Process Technol. 1996;56:364–74. doi:10.1016/0924-0136(95)01850-6.CrossRefGoogle Scholar
  16. 16.
    Santos EC, Osakada K, Shiomi M, Kitamura Y, Abe F. Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218:711–9.CrossRefGoogle Scholar
  17. 17.
    Arcella FG, Abbott DH, House MA. Rapid laser forming of titanium structures. Grenada, Spain: Metallurgy World Conference; 1998.Google Scholar
  18. 18.
    Gerbhardt A. Rapid prototyping. Munich: Hanser publishers; 2003.Google Scholar
  19. 19.
    Householder R. Molding process, US, 1979.Google Scholar
  20. 20.
    Hopkinson N, Dickens PM. Emerging rapid manufacturing processes. In: Hopkinson N, Hague RJM, Dickens PM, editors. Rapid manufacturing: an industrial revolution for the digital age. USA: John Wiley & sons; 2006.Google Scholar
  21. 21.
    Chua CK, Leong KF, Lim CS. Powder-based rapid prototyping systems. In: Rapid prototyping: principles and applications. Singapore: World Scientific; 2003.Google Scholar
  22. 22.
    Keicher DM, Love JW, Dullea KJ, Bullen JL, Gorman PH, Smith ME. Forming structures from CAD solid models. US Patent; 2004.Google Scholar
  23. 23.
    Abbott DH, Arcella FG. Aeromet implementing novel Ti process. Met Powder Rep. 1998;53:24–6.Google Scholar
  24. 24.
    Abe F, Osakada K, Kitamura Y, Matsumoto M, Shiomi M. Manufacturing of titanium parts for medical purposes by selective laser melting. In: Rapid prototyping. Tokyo, Japan: University of Dayton; 2000. p. 288–293.Google Scholar
  25. 25.
    Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, et al. Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;27:955–63. doi:10.1016/j.biomaterials.2005.07.041.PubMedCrossRefGoogle Scholar
  26. 26.
    Sercombe T, Jones N, Day R, Kop A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyping J. 2008;14:300–4. doi:10.1108/13552540810907974.CrossRefGoogle Scholar
  27. 27.
    Hulbert SF, Klawitter JJ, Talbert CD, Fitts CT. Research in dental and medical materials. New York: Plenum; 1969. p. 19.Google Scholar
  28. 28.
    Nilles JL, Coletti JM, Wilson C. Biomechanical evaluation of bone porous material interfaces. J Biomed Mater Res. 1973;7:231–51. doi:10.1002/jbm.820070211.CrossRefGoogle Scholar
  29. 29.
    Harris WH, Jasty M. Bone ingrowth into porous coated canine acetabular replacements: the effect of pore size, apposition, and dislocation. Hip. 1985;214–34.Google Scholar
  30. 30.
    Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, et al. Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res Appl Biomater. 2003;64B:107–20.CrossRefGoogle Scholar
  31. 31.
    Kusakabe H, Sakamaki T, Nihei K, Oyama Y, Yanagimoto S, Ichimiya M, et al. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Biomaterials. 2004;25:2957–69. doi:10.1016/j.biomaterials.2003.09.090.PubMedCrossRefGoogle Scholar
  32. 32.
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71. doi:10.1016/S0021-9290(01)00040-9.PubMedCrossRefGoogle Scholar
  33. 33.
    Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–90. doi:10.1016/0021-9290(93)90058-M.PubMedCrossRefGoogle Scholar
  34. 34.
    Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech. 1995;28:715–24. doi:10.1016/0021-9290(94)00125-N.PubMedCrossRefGoogle Scholar
  35. 35.
    Manley MT, Ong KL, Kurtz SM. The potential for bone loss in acetabular structures following THA. Clin Orthop Relat Res. 2006;453:246–53. doi:10.1097/01.blo.0000238855.54239.fd.PubMedCrossRefGoogle Scholar
  36. 36.
    Rydell NW. Forces acting in the femoral head-prosthesis. Acta Orthop Scand. 1966;Suppl 88:37.Google Scholar
  37. 37.
    von Eisenhart R, Adam C, Steinlechner M, Muller-Gerbl M, Eckstein F. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res. 1999;17:532–9. doi:10.1002/jor.1100170411.CrossRefGoogle Scholar
  38. 38.
    Widmer KH, Zurfluh B, Morscher EW. Load transfer and fixation mode of press-fit acetabular sockets. J Arthroplasty. 2002;17:926–35. doi:10.1054/arth.2002.34526.PubMedCrossRefGoogle Scholar
  39. 39.
    Dorr LD, Bloebaum R, Emmanual J, Meldrum R. Histologic, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop Relat Res. 1990;261:82–95.PubMedGoogle Scholar
  40. 40.
    Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty. J Arthroplasty. 1995;10:498–506.PubMedCrossRefGoogle Scholar
  41. 41.
    Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11:157–64. doi:10.1002/jbm.820110202.PubMedCrossRefGoogle Scholar
  42. 42.
    Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J. 2003;9:314–26. doi:10.1108/13552540310502211.CrossRefGoogle Scholar
  43. 43.
    ASTM. ASTM standard test methods of compression testing of metallic materials at room temperature. ASTM; 2000.Google Scholar
  44. 44.
    Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge, UK: Cambridge University Press; 1999.Google Scholar
  45. 45.
    Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1:211–22. doi:10.1016/j.actbio.2004.11.009.PubMedCrossRefGoogle Scholar
  46. 46.
    Mullen L, Stamp R, Brooks WK, Jones E, Sutcliffe C. Selective laser melting: a regular unit cell approach for the manufacture of porous titanium constructs suitable for orthopaedic application. J Biomed Mater Res. Part B. 2009 (in press).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Stamp
    • 1
  • P. Fox
    • 1
  • W. O’Neill
    • 2
  • E. Jones
    • 3
  • C. Sutcliffe
    • 1
  1. 1.MSERC, Department of EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.Stryker OrthopaedicsLimerickIreland

Personalised recommendations